cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220819 Number of rooted binary leaf-multilabeled trees with n leaves on the label set [2].

Original entry on oeis.org

0, 1, 4, 14, 48, 171, 614, 2270, 8518, 32567, 126168, 495079, 1962752, 7853581, 31672502, 128622480, 525523990, 2158818376, 8911039462, 36941520279, 153740822408, 642085403709, 2690217364606, 11304538078369, 47630350694248, 201181246749072, 851690546714230
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Crossrefs

Column k=2 of A319541.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<2, k*n, `if`(n::odd, 0,
          (t-> t*(1-t)/2)(b(n/2, k)))+add(b(i, k)*b(n-i, k), i=1..n/2))
        end:
    a:= n-> b(n, 2)-2*b(n, 1):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 07 2019
  • Mathematica
    (* b = A083563 *) b[n_] := b[n] = If[n < 2, 2*n, If[OddQ[n], 0, #*(1 - #)/2 &[b[n/2]]]] + Sum[b[i]*b[n - i], {i, 1, n/2}];
    (* c = A001190 *) c[n_?OddQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, (n - 1)/2}]; c[n_?EvenQ] := c[n] = Sum[c[k]*c[n - k], {k, 1, n/2 - 1}] + (1/2)*c[n/2]*(1 + c[n/2]); c[0] = 0; c[1] = 1;
    a[n_] := b[n] - 2 c[n];
    Array[a, 27] (* Jean-François Alcover, Sep 07 2019 *)

Formula

a(n) = A083563(n) - 2*A001190(n). - Andrew Howroyd, Sep 23 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 23 2018