A220884 Triangle read by rows: row n gives coefficients of expansion of Product_{k=2..n} ((n+1-k)*x+k), starting with lowest power.
1, 1, 2, 1, 6, 8, 2, 24, 58, 37, 6, 120, 444, 504, 204, 24, 720, 3708, 6388, 4553, 1318, 120, 5040, 33984, 81136, 87296, 44176, 9792, 720, 40320, 341136, 1064124, 1582236, 1203921, 463860, 82332, 5040, 362880, 3733920, 14602320, 28328480, 29724000, 17164320, 5270480, 773280, 40320, 3628800, 44339040, 210852936, 512539012, 700870638, 557061609, 255644668, 64621692, 8026416, 362880
Offset: 0
Examples
Triangle begins: [1] [1] [2, 1] [6, 8, 2] [24, 58, 37, 6] [120, 444, 504, 204, 24] [720, 3708, 6388, 4553, 1318, 120] [5040, 33984, 81136, 87296, 44176, 9792, 720] ...
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Irfan Durmić, Alex Han, Pamela E. Harris, Rodrigo Ribeiro, and Mei Yin, Probabilistic Parking Functions, arXiv:2211.00536 [math.CO], 2022.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012-2013.
Crossrefs
Programs
-
Maple
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( expand(mul((n+1-k)*x+k, k=2..n))): seq(T(n), n=0..10); # Alois P. Heinz, Nov 29 2015
-
Mathematica
row[n_] := CoefficientList[Product[((n+1-k)*x+k), {k, 2, n}], x]; Table[ row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 17 2016 *)
Extensions
T(0,0)=1 prepended by Alois P. Heinz, Nov 29 2015
Comments