cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220883 Triangle read by rows: row n gives coefficients of expansion of Product_{k = 1..n-1} ((n + 1)*x + k), starting with lowest power.

Original entry on oeis.org

1, 1, 3, 2, 12, 16, 6, 55, 150, 125, 24, 300, 1260, 2160, 1296, 120, 1918, 11025, 29155, 36015, 16807, 720, 14112, 103936, 376320, 716800, 688128, 262144, 5040, 117612, 1063692, 4934601, 12859560, 19013778, 14880348, 4782969, 40320, 1095840, 11812400, 67284000, 224490000, 453600000, 546000000, 360000000, 100000000, 362880, 11292336, 141896700, 963218080, 3943187325, 10190179923, 16741251450, 16953838770, 9646149645, 2357947691
Offset: 1

Views

Author

N. J. A. Sloane, Dec 29 2012

Keywords

Comments

Related to Stirling numbers A008275, A008277.

Examples

			Triangle begins:
    1
    1     3
    2    12     16
    6    55    150    125
   24   300   1260   2160   1296
  120  1918  11025  29155  36015  16807
  720 14112 103936 376320 716800 688128 262144
  ...
		

Crossrefs

Programs

  • Maple
    seq(seq(coeff(mul((n+1)*t + k, k = 1..n-1), t, i), i = 0..n-1), n = 1 .. 10); # Peter Bala, Nov 16 2015
    # Alternative:
    T := (n, k) -> (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k):
    seq(print(seq(T(n, k), k=1..n)), n=1..8);
    # Peter Luschny, Mar 20 2024
  • Mathematica
    A220883[n_, k_] := (-1)^(n-k)*(n+1)^(k-1)*StirlingS1[n, k];
    Table[A220883[n, k], {n, 10}, {k, n}] (* Paolo Xausa, Mar 19 2024 *)

Formula

From Peter Bala, Nov 16 2015: (Start)
E.g.f.: A(x,t) = x + (1 + 3*t)*x^2/2! + (1 + 4*t)*(2 + 4*t)*x^3/3! + ....
The function F(x,t) := 1 + t*A(x,t) has several nice properties:
F(x,t) = 1/x*Revert( x*(1 - x)^t ) = 1 + t*x + t*(1 + 3*t)*x^2/2! + t*(2 + 12*t + 16*t^2)*x^3/3! + ..., where Revert denotes the series reversion operator with respect to x.
F(x,t)*(1 - x*F(x,t))^t = 1.
F(x,t)^m = 1 + m*t*x + m*t*((m + 2)*t + 1)*x^2/2! + m*t*((m + 3)*t + 1)*((m + 3)*t + 2)*x^3/3! + m*t*((m + 4)*t + 1)*((m + 4)*t + 2)*((m + 4)*t + 3)*x^4/4! + ....
Log(F(x,t)) = t*x + t*(1 + 2*t)*x^2/2! + t*(1 + 3*t)*(2 + 3*t)*x^3/3! + t*(1 + 4*t)*(2 + 4*t)*(3 + 4*t)*x^4/4! + ... is the e.g.f for A056856.
F(x,t) = G(x,t)^t, where G(x,t) = 1 + x + (2 + 2*t)*x^2/2! + (2 + 3*t)*(3 + 3*t)*x^3/3! + (2 + 4*t)*(3 + 4*t)*(4 + 4*t)*x^4/4! + ... is the o.g.f. for A260687. (End)
T(n, k) = (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k). - Peter Luschny, Mar 01 2021 [Corrected by Paolo Xausa, Mar 19 2024]

A370832 Triangle read by rows: T(n,k) gives the number of parking functions of size n with k lucky cars. 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 8, 6, 0, 6, 37, 58, 24, 0, 24, 204, 504, 444, 120, 0, 120, 1318, 4553, 6388, 3708, 720, 0, 720, 9792, 44176, 87296, 81136, 33984, 5040, 0, 5040, 82332, 463860, 1203921, 1582236, 1064124, 341136, 40320, 0, 40320, 773280, 5270480, 17164320, 29724000, 28328480, 14602320, 3733920, 362880
Offset: 0

Views

Author

Peter Kagey, Mar 02 2024

Keywords

Comments

A car is called "lucky" if it gets its preferred parking spot.
Closely related to A220884.

Examples

			Table begins:
n\k|  0     1     2      3       4       5       6      7     8
---+-------------------------------------------------------------
 0 |  1
 1 |  0     1
 2 |  0     1     2
 3 |  0     2     8      6
 4 |  0     6    37     58      24
 5 |  0    24   204    504     444     120
 6 |  0   120  1318   4553    6388    3708     720
 7 |  0   720  9792  44176   87296   81136   33984   5040
 8 |  0  5040 82332 463860 1203921 1582236 1064124 341136 40320
      ...
		

Crossrefs

Row sums give A000272(n+1).
Cf. A000142 (main diagonal and column k=1 shifted).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand(x*mul((n+1-k)+k*x, k=2..n)))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Jun 26 2024
  • Mathematica
    row[n_] := (x (x - 1)^n Pochhammer[(n + x) / (x - 1), n]) / (n + x);
    Table[CoefficientList[Series[row[n], {x, 0, n}], x], {n, 0, 8}] // Flatten
    (* Peter Luschny, Jun 27 2024 *)

Formula

T(n, n) = n!.
T(n, 1) = (n-1)!.
Sum_{k=1..n} T(n, k) = (n+1)^(n-1).
T(n+1, n) = A002538(n).
G.f. for row n>0: x * Product_{j=2..n} (n + 1 + j*(x-1)).
T(n, k) = [x^k] (x*(x - 1)^n*Pochhammer((n + x) / (x - 1), n)) / (n + x). - Peter Luschny, Jun 27 2024

Extensions

Edited by Alois P. Heinz, Jun 26 2024
Showing 1-2 of 2 results.