A220883 Triangle read by rows: row n gives coefficients of expansion of Product_{k = 1..n-1} ((n + 1)*x + k), starting with lowest power.
1, 1, 3, 2, 12, 16, 6, 55, 150, 125, 24, 300, 1260, 2160, 1296, 120, 1918, 11025, 29155, 36015, 16807, 720, 14112, 103936, 376320, 716800, 688128, 262144, 5040, 117612, 1063692, 4934601, 12859560, 19013778, 14880348, 4782969, 40320, 1095840, 11812400, 67284000, 224490000, 453600000, 546000000, 360000000, 100000000, 362880, 11292336, 141896700, 963218080, 3943187325, 10190179923, 16741251450, 16953838770, 9646149645, 2357947691
Offset: 1
Examples
Triangle begins: 1 1 3 2 12 16 6 55 150 125 24 300 1260 2160 1296 120 1918 11025 29155 36015 16807 720 14112 103936 376320 716800 688128 262144 ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of the triangle, flattened).
- Peter Bala, Fractional iteration of a series inversion operator
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
Programs
-
Maple
seq(seq(coeff(mul((n+1)*t + k, k = 1..n-1), t, i), i = 0..n-1), n = 1 .. 10); # Peter Bala, Nov 16 2015 # Alternative: T := (n, k) -> (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k): seq(print(seq(T(n, k), k=1..n)), n=1..8); # Peter Luschny, Mar 20 2024
-
Mathematica
A220883[n_, k_] := (-1)^(n-k)*(n+1)^(k-1)*StirlingS1[n, k]; Table[A220883[n, k], {n, 10}, {k, n}] (* Paolo Xausa, Mar 19 2024 *)
Formula
From Peter Bala, Nov 16 2015: (Start)
E.g.f.: A(x,t) = x + (1 + 3*t)*x^2/2! + (1 + 4*t)*(2 + 4*t)*x^3/3! + ....
The function F(x,t) := 1 + t*A(x,t) has several nice properties:
F(x,t) = 1/x*Revert( x*(1 - x)^t ) = 1 + t*x + t*(1 + 3*t)*x^2/2! + t*(2 + 12*t + 16*t^2)*x^3/3! + ..., where Revert denotes the series reversion operator with respect to x.
F(x,t)*(1 - x*F(x,t))^t = 1.
F(x,t)^m = 1 + m*t*x + m*t*((m + 2)*t + 1)*x^2/2! + m*t*((m + 3)*t + 1)*((m + 3)*t + 2)*x^3/3! + m*t*((m + 4)*t + 1)*((m + 4)*t + 2)*((m + 4)*t + 3)*x^4/4! + ....
Log(F(x,t)) = t*x + t*(1 + 2*t)*x^2/2! + t*(1 + 3*t)*(2 + 3*t)*x^3/3! + t*(1 + 4*t)*(2 + 4*t)*(3 + 4*t)*x^4/4! + ... is the e.g.f for A056856.
F(x,t) = G(x,t)^t, where G(x,t) = 1 + x + (2 + 2*t)*x^2/2! + (2 + 3*t)*(3 + 3*t)*x^3/3! + (2 + 4*t)*(3 + 4*t)*(4 + 4*t)*x^4/4! + ... is the o.g.f. for A260687. (End)
T(n, k) = (-1)^(n-k)*(n+1)^(k-1)*Stirling1(n, k). - Peter Luschny, Mar 01 2021 [Corrected by Paolo Xausa, Mar 19 2024]
Comments