cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220892 G.f.: (1+8*x+22*x^2+8*x^3+x^4)/(1-x)^6.

Original entry on oeis.org

1, 14, 91, 364, 1085, 2666, 5719, 11096, 19929, 33670, 54131, 83524, 124501, 180194, 254255, 350896, 474929, 631806, 827659, 1069340, 1364461, 1721434, 2149511, 2658824, 3260425, 3966326, 4789539, 5744116, 6845189, 8109010, 9552991, 11195744, 13057121, 15158254, 17521595, 20170956, 23131549
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2012

Keywords

Crossrefs

Cf. A220893.

Programs

  • Mathematica
    CoefficientList[Series[(1+8x+22x^2+8x^3+x^4)/(1-x)^6,{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,14,91,364,1085,2666},40] (* Harvey P. Dale, Jan 11 2020 *)
  • PARI
    a(n)=n*(9+13*n+11*n^2+5*n^3+n^4)/3+1 \\ Charles R Greathouse IV, Jan 03 2013

Formula

a(n) = (n+1)*(n^2+3*n+3)*(n^2+n+1)/3. [Colin Barker, Jan 03 2013]
The formula is simpler if the offset is 1 rather than 0. For a(n) = b*(1+b^2+b^4)/3, b >= 1. - N. J. A. Sloane, Nov 12 2019
E.g.f.: exp(x)*(3 + 39*x + 96*x^2 + 66*x^3 + 15*x^4 + x^5)/3. - Stefano Spezia, Dec 22 2021