cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220907 a(n) = n*p(n)-spt(n) (= n*A000041(n) - A092269(n)).

Original entry on oeis.org

0, 1, 4, 10, 21, 40, 70, 119, 190, 301, 455, 686, 998, 1450, 2051, 2895, 4001, 5523, 7490, 10141, 13545, 18046, 23773, 31255, 40687, 52850, 68105, 87542, 111755, 142347, 180205, 227622, 286027, 358580, 447482, 557235, 691016, 855131, 1054375, 1297352, 1591060
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Crossrefs

Cf. A000041, A092269. Equals A220908/2.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<1, 0,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> n*combinat[numbpart](n)- b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 09 2013
  • Mathematica
    terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; spt = CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest; a[n_] := n*PartitionsP[n] - spt[[n]]; Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Jan 17 2013, after g.f. of spt(n) *)

Formula

a(n) = N_2(n)/2 (where N_2(n) is the second rank moment, see relation (1.1) of the Garvan reference).
a(n) = A066186(n) - A092269(n). - Omar E. Pol, Jan 08 2013
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)) * (1 - (3*sqrt(6)/(2*Pi) + Pi/(24 * sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Jul 31 2017