cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092269 Spt function: total number of smallest parts (counted with multiplicity) in all partitions of n.

Original entry on oeis.org

1, 3, 5, 10, 14, 26, 35, 57, 80, 119, 161, 238, 315, 440, 589, 801, 1048, 1407, 1820, 2399, 3087, 3998, 5092, 6545, 8263, 10486, 13165, 16562, 20630, 25773, 31897, 39546, 48692, 59960, 73423, 89937, 109553, 133439, 161840, 196168, 236843, 285816, 343667, 412950, 494702, 592063, 706671
Offset: 1

Views

Author

Vladeta Jovovic, Feb 16 2004

Keywords

Comments

Row sums of triangle A220504. - Omar E. Pol, Jan 19 2013

Examples

			Partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4]. 1 appears 4 times in the first, 1 twice in the second, 2 twice in the third, etc.; thus a(4)=4+2+2+1+1=10.
		

Crossrefs

For higher-order spt functions see A221140-A221144.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    terms = 47; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013 *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, x^n/(1-x^n) * prod(k=n,N, 1/(1-x^k) )  );
    v = Vec(gf)
    /* Joerg Arndt, Jan 12 2013 */

Formula

G.f.: Sum_{n>=1} x^n/(1-x^n) * Product_{k>=n} 1/(1-x^k).
a(n) = A000070(n-1) + A195820(n). - Omar E. Pol, Oct 19 2011
a(n) = n*p(n) - N_2(n)/2 = n*A000041(n) - A220908(n)/2 = A066186(n) - A220907(n) = (A220909(n) - A220908(n))/2 = A211982(n)/2 (from Andrews's paper and Garvan's paper). - Omar E. Pol, Jan 03 2013
a(n) = A000041(n) + A000070(n-2) + A220479(n), n >= 2. - Omar E. Pol, Feb 16 2013
Asymptotics (Bringmann-Mahlburg, 2009): a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(8*n)) ~ sqrt(6*n)*A000041(n)/Pi. - Vaclav Kotesovec, Jul 30 2017

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 25 2004

A220909 The second crank moment function M_2(n).

Original entry on oeis.org

0, 2, 8, 18, 40, 70, 132, 210, 352, 540, 840, 1232, 1848, 2626, 3780, 5280, 7392, 10098, 13860, 18620, 25080, 33264, 44088, 57730, 75600, 97900, 126672, 162540, 208208, 264770, 336240, 424204, 534336, 669438, 837080, 1041810, 1294344, 1601138, 1977140, 2432430, 2987040, 3655806
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

M_2(n) is defined to be Sum_{m=-n..n} m^2 M(m,n) where M(m,n) is the number of partitions of n with crank m except for n=1 where M(-1,1) = M(1,1) = -M(0,1) = 1. - Michael Somos, Nov 10 2013
From Omar E. Pol, Jul 25 2022: (Start)
Apart from the initial zero this is also:
Convolution of A074400 and A000041.
Convolution of A000203 and A139582. (End)

Examples

			G.f. = 2*x + 8*x^2 + 18*x^3 + 40*x^4 + 70*x^5 + 132*x^6 + 210*x^7 + ...
For n=1, M_2(1) = Sum_{m=-1..1} m^2 * M(m,2) = (-1)^2*1 + 0^2*(-1) + 1^2*1 = 2. For n=2, the partition [2] has crank 2 and partition [1,1] has crank -2, hence M_2(2) = 2^2 + (-2)^2 = 8. - _Michael Somos_, Nov 10 2013
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2 n PartitionsP @ n (* Michael Somos, Nov 10 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * n * polcoeff( 1 / eta(x + x * O(x^n)), n))} /* Michael Somos, Nov 10 2013 */

Formula

a(n) = 2*n*A000041(n) = 2*A066186(n).
a(n) = n*A139582(n). - Omar E. Pol, Jan 03 2013
a(n) = A220908(n) + A211982(n), n >= 1. - Omar E. Pol, Jan 17 2013
a(n) = 2*(A092269(n) + A220907(n)), n >= 1. _Omar E. Pol, Feb 18 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016

A220908 The second rank moment function N_2(n).

Original entry on oeis.org

0, 2, 8, 20, 42, 80, 140, 238, 380, 602, 910, 1372, 1996, 2900, 4102, 5790, 8002, 11046, 14980, 20282, 27090, 36092, 47546, 62510, 81374, 105700, 136210, 175084, 223510, 284694, 360410, 455244, 572054, 717160, 894964, 1114470, 1382032, 1710262, 2108750, 2594704, 3182120
Offset: 1

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

N_2(n) is also called the second Atkin-Garvan moment (see Andrews' paper). - Omar E. Pol, Oct 23 2013

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i<1, 0,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> 2*(n*combinat[numbpart](n)- b(n, n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 09 2013
  • Mathematica
    terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; spt = CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest; a[n_] := 2*(n*PartitionsP[n] - spt[[n]]); Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Jan 17 2013, after g.f. of spt(n) *)

Formula

a(n) = 2*A220907(n) = 2*(n*A000041(n)-A092269(n)).
a(n) = 2*(A066186(n) - A092269(n)). - Omar E. Pol, Jan 09 2013
a(n) = A220909(n) - A211982(n). - Omar E. Pol, Jan 16 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (3*sqrt(6)/(2*Pi) + Pi/(24*sqrt(6)))/sqrt(n) + (5/48 + Pi^2/6912)/n). - Vaclav Kotesovec, Jul 31 2017

A211982 Second crank moment minus second rank moment: M_2(n) - N_2(n) = 2*spt(n).

Original entry on oeis.org

2, 6, 10, 20, 28, 52, 70, 114, 160, 238, 322, 476, 630, 880, 1178, 1602, 2096, 2814, 3640, 4798, 6174, 7996, 10184, 13090, 16526, 20972, 26330, 33124, 41260, 51546, 63794, 79092, 97384, 119920, 146846, 179874, 219106, 266878, 323680, 392336, 473686
Offset: 1

Views

Author

Omar E. Pol, Jan 03 2013

Keywords

Comments

Also total number of smallest parts in all partitions of n, multiplied by 2.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
          `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> 2* b(n, n):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 17 2013
  • Mathematica
    terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; 2*CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013, from 2nd formula *)

Formula

a(n) = A220909(n) - A220908(n) = 2*A092269(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(2*n)) * (1 - Pi/(24*sqrt(6*n)) + (144+Pi^2)/(6912*n)). - Vaclav Kotesovec, Jul 31 2017
Showing 1-4 of 4 results.