cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220910 Matchings avoiding the pattern 231.

Original entry on oeis.org

1, 1, 3, 14, 83, 570, 4318, 35068, 299907, 2668994, 24513578, 230981316, 2222973742, 21777680644, 216603095388, 2182653550712, 22245324259811, 228995136248850, 2378208988952434, 24893925007653748, 262424206657706682, 2784074166633171596, 29707452318776988260, 318664451642694840264
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Crossrefs

Cf. A220911.

Programs

  • Mathematica
    CoefficientList[Series[((1-12*x)^(3/2) + (1+36*x)) / (2*(4*x+1)^2),{x,0,20}],x] (* Vaclav Kotesovec, Aug 23 2014 *)
  • PARI
    x='x+O('x^50); Vec(((1-12*x)^(3/2)+(1+36*x))/(2*(4*x+1)^2)) \\ Altug Alkan, Nov 25 2015

Formula

G.f.: 54*z/(1+36*z-(1-12*z)^(3/2)) [Cervetti-Ferrari]. - N. J. A. Sloane, Nov 30 2020
Special values of the hypergeometric function 2F1, in Maple notation: a(n) = (27/8)*doublefactorial(2*n-1)*6^n*hypergeom([2, n+1/2], [n+3], -3)/(n+2)!, n>0. - Karol A. Penson and Wojciech Mlotkowski, Aug 04 2013
D-finite with recurrence n*a(n) +2*(-4*n+17)*a(n-1) +24*(-2*n+3)*a(n-2)=0. - R. J. Mathar, Aug 04 2013
G.f.: ((1-12*x)^(3/2) + (1+36*x)) / (2*(4*x+1)^2). - Vaclav Kotesovec, Aug 23 2014
a(n) ~ 2^(2*n-7) * 3^(n+3) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Aug 23 2014
G.f. A(x) satisifies A(x) = 1 + x*A(x)^2*(2 - G(x*A(x)^2))*G(x*A(x)^2)^2, where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Aug 25 2014

Extensions

a(11)-a(23) by Karol A. Penson and Wojciech Mlotkowski, Aug 04 2013
Prepended a(0)=1 from Vaclav Kotesovec, Aug 23 2014