cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221074 Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3.

Original entry on oeis.org

2, 8, 1, 16, 1, 96, 1, 176, 1, 968, 1, 1760, 1, 9600, 1, 17440, 1, 95048, 1, 172656, 1, 940896, 1, 1709136, 1, 9313928, 1, 16918720, 1, 92198400, 1, 167478080, 1, 912670088, 1, 1657862096, 1
Offset: 0

Views

Author

Peter Bala, Jan 06 2013

Keywords

Comments

Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 3. For other cases see A221073 (m = 2), A221075 (m = 4) and A221076 (m = 5).

Examples

			Product {n >= 0} {1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(sqrt(3) - sqrt(2))^(4*n+1)} = 2.11180 16361 44098 52896 ...
= 2 + 1/(8 + 1/(1 + 1/(16 + 1/(1 + 1/(96 + 1/(1 + 1/(176 + ...))))))).
Since (sqrt(3) - sqrt(2))^3 = 9*sqrt(3) - 11*sqrt(2) we have the following simple continued fraction expansion:
product {n >= 0} {1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+3)}/{1 - sqrt(3)*(9*sqrt(3) - 11*sqrt(2))^(4*n+1)} = 1 + 1/(16 + 1/(1 + 1/(968 + 1/(1 + 1/(17440 + 1/(1 + 1/(940896 + ...))))))).
		

Crossrefs

Cf. A098297, A105438, A132596, A174500, A221073 (m = 2), A221075 (m = 4), A221076 (m = 5).

Formula

a(2*n) = 1 for n >= 1. For n >= 1 we have
a(4*n - 3) = (sqrt(3) + sqrt(2))^(2*n) + (sqrt(3) - sqrt(2))^(2*n) - 2;
a(4*n - 1) = 1/sqrt(3)*{(sqrt(3) + sqrt(2))^(2*n + 1) + (sqrt(3) - sqrt(2))^(2*n + 1)} - 2.
a(4*n - 3) = 8*A098297(n) = 4*A132596(n); a(4*n - 1) = 4*A105038(n).
O.g.f.: 2 + x^2/(1 - x^2) + 8*x*(1 + x^2)^2/(1 - 11*x^4 + 11*x^8 - x^12) = 2 + 8*x + x^2 + 16*x^3 + x^4 + 96*x^5 + ....
If we denote the present sequence by [2; 8, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+3)]/[1 - sqrt(3)*{(sqrt(3)-sqrt(2))^(2*k+1)}^(4*n+1)]. An example is given below.
O.g.f.: (x^10-2*x^8-10*x^6+20*x^4-8*x^3+x^2-8*x-2) / ((x-1)*(x+1)*(x^8-10*x^4+1)). - Colin Barker, Jan 10 2014