A221184 Number of colored quivers in the 4-mutation class of a quiver of Dynkin type A_n.
1, 1, 3, 19, 118, 931, 7756, 68685, 630465, 5966610, 57805410, 571178751, 5737638778, 58455577800, 602859152496, 6283968796705, 66119469155523, 701526880303315, 7498841128986109, 80696081185766970, 873654669882574580
Offset: 0
Links
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, arXiv:1004.4512 [math.RT], 2010.
- Hermund A. Torkildsen, Colored quivers of type A and the cell-growth problem, J. Algebra and Applications, 12 (2013), #1250133.
Crossrefs
Programs
-
Mathematica
u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r); T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k; a[n_] := T[n + 1, 6]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *) p=6; Table[Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))+If[OddQ[n],0,Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&],{n,30}] (* Robert A. Russell, Jan 23 2024 *)
Formula
a(n) ~ 5^(5*n + 11/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 27/2)). - Vaclav Kotesovec, Jun 15 2018
Extensions
a(0)=1 and a(18)-a(20) corrected by Andrew Howroyd, Nov 20 2017
Comments