A221205 a(n) is the nearest integer to sqrt(pi(10^n)) (see A006880).
0, 2, 5, 13, 35, 98, 280, 815, 2400, 7131, 21332, 64172, 193928, 588273, 1790235, 5463018, 16710426, 51220671, 157289397, 483795067, 1490241458, 4596440959, 14193917243, 43878472986, 135777758736, 420530985064, 1303551591182, 4043817556078, 12553456467283, 38996129419652
Offset: 0
Keywords
Crossrefs
Cf. A006880.
Programs
-
Mathematica
Array[Round@ Sqrt@ PrimePi[10^#] &, 17, 0] (* Michael De Vlieger, Mar 19 2021 *)
-
PARI
a(n) = round(sqrt(primepi(10^n))); \\ Michel Marcus, Mar 19 2021
-
Python
from math import isqrt from sympy import primepi def A221205(n): return (m:=isqrt(k:=int(primepi(10**n))))+int(k-m*(m+1)>=1) # Chai Wah Wu, Jul 31 2022
Formula
a(n) = round(sqrt(A006880(n))).
Extensions
a(21) to a(24) added by Vladimir Pletser, Feb 27 2013 (recovered by Georg Fischer, Jan 20 2019)
a(25)-a(28), obtained using A006880, added by Eduard Roure Perdices, Apr 16 2021
a(29), obtained using A006880, added by Chai Wah Wu, Jul 31 2022
Comments