A221219 Numbers k such that sigma(k) divides Sum_{d|k} sigma(d).
1, 198, 608, 4680, 11322, 20826, 56608, 60192, 179424, 1737000, 2578968, 3055150, 3441888, 5604192, 6008184, 6331104, 302459850, 320457888, 477229032, 565344850, 579667086, 589459104, 731925000, 766073448, 907521650, 928765600, 3586977576, 3732082848, 6487717600
Offset: 1
Keywords
Examples
4680 is in the sequence because sigma(4680)=16380, its proper divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 18, 20, 24, 26, 30, 36, 39, 40, 45, 52, 60, 65, 72, 78, 90, 104, 117, 120, 130, 156, 180, 195, 234, 260, 312, 360, 390, 468, 520, 585, 780, 936, 1170, 1560, 2340 and the sum of their sigma values is 32760. Finally 32760/16380=2.
Programs
-
Magma
[k: k in [1..1000000] | &+[SumOfDivisors(d): d in Divisors(k)] mod SumOfDivisors(k) eq 0] // Jaroslav Krizek, Dec 22 2018
-
Maple
with(numtheory); A221219:=proc(q) local a,b,j,n; for n from 1 to q do a:=divisors(n); b:=add(sigma(a[j]),j=1..nops(a)); if type(b/sigma(n),integer) then print(n); fi; od; end: A221219(10^10);
-
Mathematica
f1[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f2[p_, e_] := (p^(e+1) - 1)/(p - 1); aQ[1] = True; aQ[n_] := Module[{f = FactorInteger[n]}, Divisible[Times @@ f1 @@@ f, Times @@ f2 @@@ f]]; Select[Range[10^5], aQ] (* Amiram Eldar, Dec 23 2018 *)
-
PARI
isok(n) = (sumdiv(n, d, sigma(d)) % sigma(n) == 0); \\ Michel Marcus, Dec 22 2018
Extensions
a(10)-a(28) from Donovan Johnson, Apr 05 2013
1 prepended by Jaroslav Krizek, Dec 22 2018
Comments