cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A239155 T(n,k)=Number of (n+1)X(k+1) 0..3 arrays with no element equal to all horizontal neighbors or unequal to all vertical neighbors, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 2, 1, 7, 2, 7, 24, 7, 55, 17, 88, 24, 868, 208, 96, 328, 88, 12159, 5775, 2778, 340, 1235, 328, 175471, 135766, 209839, 17050, 1639, 4668, 1235, 2519488, 3313304, 12844591, 2709568, 166531, 6623, 17675, 4668, 36221263, 80240064, 821135900, 330311070
Offset: 1

Views

Author

R. H. Hardin, Mar 11 2014

Keywords

Comments

Table starts
....1.......2..........7...........24..............88................328
....1.......2..........7...........24..............88................328
....7......55........868........12159..........175471............2519488
...17.....208.......5775.......135766.........3313304...........80240064
...96....2778.....209839.....12844591.......821135900........52019283568
..340...17050....2709568....330311070.....42600989632......5427557363908
.1639..166531...63961519..18120156500...5469574400477...1628795409782566
.6623.1221727.1049404191.629468400383.407538214264758.259498303698165490

Examples

			Some solutions for n=4 k=4
..0..1..1..0..2....0..1..1..2..3....0..1..2..0..2....0..1..2..0..3
..0..1..1..0..2....0..1..1..2..3....0..1..2..0..2....0..1..2..0..3
..0..1..1..0..2....0..2..1..2..1....2..1..2..1..0....0..1..2..0..3
..0..3..1..3..1....3..2..0..0..1....2..0..1..1..0....1..2..1..2..3
..0..3..1..3..1....3..2..0..0..1....2..0..1..1..0....1..2..1..2..3
		

Crossrefs

Row 1 and 2 are A221454(n+1)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) +7*a(n-2) -26*a(n-3) +5*a(n-4) +14*a(n-5)
k=2: [order 14]
k=3: [order 9]
Empirical for row n:
n=1: a(n) = 4*a(n-1) +a(n-2) -6*a(n-3) -3*a(n-4)
n=2: a(n) = 4*a(n-1) +a(n-2) -6*a(n-3) -3*a(n-4)
n=3: a(n) = 14*a(n-1) +14*a(n-2) -124*a(n-3) -6*a(n-4) +90*a(n-5) -27*a(n-6)
n=4: [order 14]
n=5: [order 57]
Showing 1-1 of 1 results.