A221581 A sum over partitions (q=14), see first comment.
1, 13, 195, 2730, 38402, 537615, 7529340, 105410565, 1475786130, 20661005638, 289254613830, 4049564590890, 56693911799265, 793714765148760, 11112006817455180, 155568095444334495, 2177953337695895942, 30491346727741970070, 426878854209048054450
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Maple
with(numtheory): b:= proc(n) b(n):= add(phi(d)*14^(n/d), d=divisors(n))/n-1 end: a:= proc(n) a(n):= `if`(n=0, 1, add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Feb 03 2013
-
Mathematica
b[n_] := Sum[EulerPhi[d]*14^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
-
PARI
N=66; x='x+O('x^N); gf=prod(n=1,N, (1-x^n)/(1-14*x^n) ); v=Vec(gf)
Comments