cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221719 a(n) = 3*2^n - Fibonacci(n+3) - 1.

Original entry on oeis.org

0, 2, 6, 15, 34, 74, 157, 328, 678, 1391, 2838, 5766, 11677, 23588, 47554, 95719, 192426, 386450, 775485, 1555152, 3117070, 6245087, 12507886, 25044430, 50135229, 100345484, 200812362, 401821143, 803960098, 1608434426, 3217700893, 6436748056, 12875674422, 25754873423, 51515449734, 103040126934, 206095184221, 412214526260, 824468140690
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2013

Keywords

Comments

Number of 3-strand braids with n crossings, divided by 2.

References

  • Paul K. Stockmeyer, Personal communication, Jan 12 2013

Crossrefs

Programs

  • Magma
    A221719:= func< n | 3*2^n - Fibonacci(n+3) - 1 >; // G. C. Greubel, Jun 05 2025
    
  • Mathematica
    LinearRecurrence[{4,-4,-1,2},{0,2,6,15},40] (* Harvey P. Dale, Aug 25 2015 *)
    A221719[n_]:= 3*2^n -Fibonacci[n+3] -1; (* G. C. Greubel, Jun 05 2025 *)
  • PARI
    concat(0, Vec(x*(x^2+2*x-2)/((x-1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Jun 07 2015
    
  • SageMath
    def A221719(n): return 3*2**n - fibonacci(n+3) - 1 # G. C. Greubel, Jun 05 2025

Formula

From Colin Barker, Jun 07 2015: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) for n>3.
G.f.: x*(2-2*x-x^2) / ((1-x)*(1-2*x)*(1-x-x^2)). (End)
a(n) = -1 + 3*2^n + ( (2-sqrt(5))*((1-sqrt(5))/2)^n - (2+sqrt(5))*((1+sqrt(5))/2)^n )/sqrt(5). - Colin Barker, Nov 03 2016
From G. C. Greubel, Jun 05 2025: (Start)
a(n) = A083329(n+1) - A000045(n+3).
a(n) = A104004(n) - 1.
E.g.f.: 3*exp(2*x) - exp(x) - (2/sqrt(5))*exp(x/2)*( 2*sinh(sqrt(5)*x/2) + sqrt(5)*cosh(sqrt(5)*x/2) ). (End)