cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221902 Primes of the form 2*n^2 + 10*n + 3.

Original entry on oeis.org

31, 103, 211, 751, 1291, 2371, 2803, 3271, 5503, 6151, 8311, 9103, 9931, 17851, 23971, 25303, 32503, 42331, 49603, 51511, 68071, 82003, 94603, 97231, 105331, 119551, 122503, 137803, 157351, 167611, 171103, 174631, 192811, 204151
Offset: 1

Views

Author

Vincenzo Librandi, Jan 31 2013

Keywords

Comments

Conjecture: After the first term, 2^a(n)-1 is not prime; in other words, these primes (except 31) are included in A054723.
2*a(n) + 19 is a square. - Vincenzo Librandi, Apr 10 2015

Crossrefs

Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723 (Prime exponents of nonprime Mersenne numbers).

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 10*n + 3];
  • Mathematica
    Select[Table[2 n^2 + 10 n + 3,{n, 500}],PrimeQ]