A299906 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 58, 58, 16, 1, 1, 32, 196, 344, 196, 32, 1, 1, 64, 634, 1786, 1786, 634, 64, 1, 1, 128, 1996, 8528, 13528, 8528, 1996, 128, 1, 1, 256, 6178, 38578, 90946, 90946, 38578, 6178, 256, 1, 1, 512, 18916, 168344, 564376, 833432, 564376, 168344, 18916, 512, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, ..., 1, 2, 4, 8, 16, 32, ..., 1, 4, 16, 58, 196, 634, ..., 1, 8, 58, 344, 1786, 8528, ..., 1, 16, 196, 1786, 13528, 90946, ..., 1, 32, 634, 8528, 90446, 833432, ..., ...
Links
- Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017. Also Discrete Math., 341 (2018), 341-349.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[(Binomial[j-1, k0-1] * j!^2 * StirlingS2[k+1, j+1] * StirlingS2[n+1, j+1])/k0!, {k0, 0, k}, {j, k0, Min[k, n]}]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)
Extensions
More terms from Jean-François Alcover, Feb 24 2018
Name corrected by Alexander Karpov, Oct 19 2019
Comments