cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A221961 Number of n X n symmetric lonesum ternary matrices.

Original entry on oeis.org

1, 3, 18, 149, 1390, 13377
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2013

Keywords

Crossrefs

Cf. A000629 (the binary case).
See also A299906, A299907 for the general binary case.

Formula

Kim et al. (2013) give a formula.

A299904 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices of decomposition order 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 7, 13, 7, 0, 0, 15, 45, 45, 15, 0, 0, 31, 145, 229, 145, 31, 0, 0, 63, 453, 1065, 1065, 453, 63, 0, 0, 127, 1393, 4717, 6901, 4717, 1393, 127, 0, 0, 255, 4245, 20265, 41505, 41505, 20265, 4245, 255, 0, 0, 511, 12865, 85309, 237685, 329461, 237685, 85309, 12865, 511, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Examples

			Array begins:
0,0,0,0,0,0,...,
0,1,3,7,15,31,...,
0,3,13,45,145,453,...,
0,7,45,229,1065,4717,...,
0,15,145,1065,6901,41505,...,
0,31,453,4717,41505,32946,...,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[j!^2*StirlingS2[k + 1, j + 1]*StirlingS2[n + 1, j + 1], {j, 1, Min[k, n]}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018

A299905 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices of decomposition order 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 50, 108, 50, 0, 0, 0, 0, 180, 660, 660, 180, 0, 0, 0, 0, 602, 3420, 5714, 3420, 602, 0, 0, 0, 0, 1932, 16212, 40860, 40860, 16212, 1932, 0, 0, 0, 0, 6050, 72828, 262010, 391500, 262010, 72828, 6050, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Examples

			Array begins:
0,0,0,0,0,0,...,
0,0,0,0,0,0,...,
0,0,2,12,50,180,...,
0,0,12,108,660,3420,...,
0,0,50,660,5714,40860,...,
0,0,180,3420,40860,39150,...,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[(1/2)*(j - 1 )*j!^2*StirlingS2[k + 1, j + 1]*StirlingS2[n + 1, j + 1], {j, 2, Min[k, n]}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018

A299907 Number of decomposable lonesum n X n (0,1) matrices.

Original entry on oeis.org

1, 2, 16, 344, 13528, 833432, 73871416, 8893109864, 1394602938808, 275985896665592, 67227147723919096, 19756312865302785224, 6889612105281125091448, 2811911251972519547757272, 1327454489179890318710048056, 717555570945004782603934710824
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Crossrefs

Main diagonal of A299906.
See also A000629, A221961 for symmetric square lonesum matrices.
See A099594 for lonesum (0,1) matrices.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[j - 1 , k - 1 ]*j!^2*StirlingS2[n + 1, j + 1]^2/k!, {k, 0, n}, {j, k, n}]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018
Showing 1-4 of 4 results.