cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A299906 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 58, 58, 16, 1, 1, 32, 196, 344, 196, 32, 1, 1, 64, 634, 1786, 1786, 634, 64, 1, 1, 128, 1996, 8528, 13528, 8528, 1996, 128, 1, 1, 256, 6178, 38578, 90946, 90946, 38578, 6178, 256, 1, 1, 512, 18916, 168344, 564376, 833432, 564376, 168344, 18916, 512, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Comments

A (0,1) n X k matrix is lonesum if the matrix is uniquely determined by its row-sum and column-sum vectors, that is, by the sum of its rows and the sum of its columns. For example, the 2 X 3 matrix [1,1,1 / 0,1,0] is the only matrix with column-sum vector [1,2,1] and row-sum vector [3,1].

Examples

			Array begins:
  1,  1,   1,    1,     1,      1, ...,
  1,  2,   4,    8,    16,     32, ...,
  1,  4,  16,   58,   196,    634, ...,
  1,  8,  58,  344,  1786,   8528, ...,
  1, 16, 196, 1786, 13528,  90946, ...,
  1, 32, 634, 8528, 90446, 833432, ...,
  ...
		

Crossrefs

See A299907 for main diagonal (i.e. square matrices).
See also A000629, A221961 for symmetric square matrices.
See A099594 for lonesum (0,1) matrices.

Programs

  • Mathematica
    T[n_, k_] := Sum[(Binomial[j-1, k0-1] * j!^2 * StirlingS2[k+1, j+1] * StirlingS2[n+1, j+1])/k0!, {k0, 0, k}, {j, k0, Min[k, n]}]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018
Name corrected by Alexander Karpov, Oct 19 2019

A299905 Array read by antidiagonals: T(n,k) = number of n X k lonesum decomposable (0,1) matrices of decomposition order 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 12, 12, 0, 0, 0, 0, 50, 108, 50, 0, 0, 0, 0, 180, 660, 660, 180, 0, 0, 0, 0, 602, 3420, 5714, 3420, 602, 0, 0, 0, 0, 1932, 16212, 40860, 40860, 16212, 1932, 0, 0, 0, 0, 6050, 72828, 262010, 391500, 262010, 72828, 6050, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 23 2018

Keywords

Examples

			Array begins:
0,0,0,0,0,0,...,
0,0,0,0,0,0,...,
0,0,2,12,50,180,...,
0,0,12,108,660,3420,...,
0,0,50,660,5714,40860,...,
0,0,180,3420,40860,39150,...,
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Sum[(1/2)*(j - 1 )*j!^2*StirlingS2[k + 1, j + 1]*StirlingS2[n + 1, j + 1], {j, 2, Min[k, n]}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2018 *)

Extensions

More terms from Jean-François Alcover, Feb 24 2018
Showing 1-2 of 2 results.