A221981 Primes q = 4*p+1, where p == 2 (mod 5) is also prime.
29, 149, 269, 389, 509, 1109, 1229, 1949, 2309, 2909, 3989, 4349, 5189, 5309, 6269, 6389, 7109, 7949, 8069, 9749, 10589, 10709, 11069, 11549, 12149, 12269, 13229, 13829, 14549, 15629, 16229, 17189, 17789, 18269, 19949, 20789, 22109, 22229, 24029, 24989, 25349, 25469, 25589, 26189, 26309, 28109, 28229, 28949, 29669, 30029, 30869, 31469, 32069, 33149, 34589, 34949, 36269, 36629, 36749, 37589
Offset: 1
Keywords
Examples
29 is a member because 29 = 4*7 + 1 and 7 == 2 (mod 5) are prime.
References
- P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F9, pp. 377-380.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- P. L. Chebyshev, Theorie der Congruenzen, Mayer & Mueller, 1889, pp. 306-313.
- Pieter Moree, Artin's primitive root conjecture - a survey, arXiv:math/0412262 [math.NT], 2004, revised 2012, p. 1.
- Index entries for sequences related to Artin's conjecture
- Index entries for primes by primitive root
Programs
-
Maple
A221981:=n->`if`(isprime(4*n+1) and isprime(n) and n mod 5 = 2, 4*n+1, NULL): seq(A221981(n), n=1..10^4); # Wesley Ivan Hurt, Dec 11 2015
-
Mathematica
Select[ Prime[ Range[4000]], Mod[(# - 1)/4, 5] == 2 && PrimeQ[(# - 1)/4] &]
-
PARI
is(n)=n%20==9 && isprime(n) && isprime(n\4) \\ Charles R Greathouse IV, Apr 18 2013
Formula
a(n) = 4*A221982(n) + 1.
a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 30 2024
Comments