cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A222051 Central terms in rows of triangle A220178.

Original entry on oeis.org

1, 6, 150, 4200, 131670, 4360356, 149885736, 5287716720, 190170736470, 6941694002100, 256393942704900, 9561265547652000, 359399657792284200, 13600394660797333200, 517621830467456905200, 19798076590576557847200, 760517744810283004728150, 29325625363665142395552900
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2013

Keywords

Crossrefs

Programs

  • PARI
    /* As Central Terms in Rows of Triangle A220178: */
    {A220178(n, k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)), n, x), k, y)}
    {a(n)=A220178(2*n, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+1)*binomial(2*n,n)*A222050(n), where the g.f. G(x) of A222050 satisfies: G(x) = sqrt(1 + 2*x*G(x)^4 + 3*x^2*G(x)^6).
a(n) = [x^n] d^(2*n)/dx^(2*n) (1+x+x^2)^(2*n) / (2*n)!, by definition.

A222052 a(n) = A222051(n)/binomial(2*n,n), the central terms in rows of triangle A220178 divided by the central binomial coefficients.

Original entry on oeis.org

1, 3, 25, 210, 1881, 17303, 162214, 1540710, 14776281, 142774455, 1387743525, 13553773500, 132906406950, 1307654814222, 12902933709922, 127632756058610, 1265251299930585, 12566655467547195, 125025126985317013, 1245750306517239978, 12429515281592007781
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 25*x^2 + 210*x^3 + 1881*x^4 + 17303*x^5 +...
Illustrate a(n) = [x^n] 1/(sqrt(1-2*x-3*x^2))^(2*n+1):
Let G(x) = 1/sqrt(1-2*x-3*x^2) be the g.f. of A002426, then
the array of coefficients of x^k in G(x)^(2*n+1) begins:
G(x)^1 : [1,  1,   3,    7,    19,    51,    141,     393,...];
G(x)^3 : [1,  3,  12,   40,   135,   441,   1428,    4572,...];
G(x)^5 : [1,  5,  25,  105,   420,  1596,   5880,   21120,...];
G(x)^7 : [1,  7,  42,  210,   966,  4158,  17094,   67782,...];
G(x)^9 : [1,  9,  63,  363,  1881,  9009,  40755,  176319,...];
G(x)^11: [1, 11,  88,  572,  3289, 17303,  85228,  398684,...];
G(x)^13: [1, 13, 117,  845,  5330, 30498, 162214,  814606,...];
G(x)^15: [1, 15, 150, 1190,  8160, 50388, 287470, 1540710,...]; ...
in which the main diagonal forms this sequence.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1/sqrt(1-2*x-3*x^2+x*O(x^n))^(2*n+1),n)}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) = [x^n] 1/(sqrt(1-2*x-3*x^2))^(2*n+1).
a(n) = (2*n+1)*A222050(n), where g.f. G(x) of A222050 satisfies: G(x) = sqrt(1 + 2*x*G(x)^4 + 3*x^2*G(x)^6).

A250887 G.f. A(x) satisfies: x = A(x) * (1 + A(x)) * (1 - 3*A(x)).

Original entry on oeis.org

1, 2, 11, 70, 503, 3864, 31092, 258654, 2206655, 19200610, 169739843, 1520241320, 13764959908, 125792608400, 1158745944312, 10747830197070, 100295912869263, 940958196049830, 8870071185895425, 83972749650989430, 798033019890224415, 7610570090722324320, 72810031747355657040
Offset: 1

Views

Author

Paul D. Hanna, Nov 28 2014

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 11*x^3 + 70*x^4 + 503*x^5 + 3864*x^6 + ...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 26*x^4 + 184*x^5 + 1407*x^6 + 11280*x^7 + ...
A(x)^3 = x^3 + 6*x^4 + 45*x^5 + 350*x^6 + 2844*x^7 + 23814*x^8 + ...
where x = A(x) - 2*A(x)^2 - 3*A(x)^3.
The square-root of A(x)/x is the g.f. of A222050:
sqrt(A(x)/x) = 1 + x + 5*x^2 + 30*x^3 + 209*x^4 + 1573*x^5 + 12478*x^6 + ...
		

Crossrefs

Cf. A222050.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 3*x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 21 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 2*x^2 - 3*x^3 + x^2*O(x^n)),n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f.: Series_Reversion(x - 2*x^2 - 3*x^3).
a(n) ~ (13*sqrt(13) + 35)^(n-1/2) / (13^(1/4) * sqrt(Pi) * n^(3/2) * 2^(3*n-1/2)). - Vaclav Kotesovec, Aug 21 2017
Showing 1-3 of 3 results.