cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222050 G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x)^4 + 3*x^2*A(x)^6).

Original entry on oeis.org

1, 1, 5, 30, 209, 1573, 12478, 102714, 869193, 7514445, 66083025, 589294500, 5316256278, 48431659786, 444928748618, 4117185679310, 38340948482745, 359047299072777, 3379057486089649, 31942315551724102, 303158909307122141, 2887629443604011421, 27595392738011189028
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 30*x^3 + 209*x^4 + 1573*x^5 + 12478*x^6 +...
Related expansions.
A(x)^2 = 1 + 2*x + 11*x^2 + 70*x^3 + 503*x^4 + 3864*x^5 + 31092*x^6 +...
A(x)^4 = 1 + 4*x + 26*x^2 + 184*x^3 + 1407*x^4 + 11280*x^5 + 93606*x^6 +...
A(x)^6 = 1 + 6*x + 45*x^2 + 350*x^3 + 2844*x^4 + 23814*x^5 + 204149*x^6 +...
where A(x)^2 = 1 + 2*x*A(x)^4 + 3*x^2*A(x)^6.
Let G(x) = 1/sqrt(1-2*x-3*x^2) denote the g.f. of A002426,
then the array of coefficients of x^k in G(x)^(2*n+1) begins:
G(x)^1 : [1,  1,   3,    7,    19,    51,    141,     393,...];
G(x)^3 : [1,  3,  12,   40,   135,   441,   1428,    4572,...];
G(x)^5 : [1,  5,  25,  105,   420,  1596,   5880,   21120,...];
G(x)^7 : [1,  7,  42,  210,   966,  4158,  17094,   67782,...];
G(x)^9 : [1,  9,  63,  363,  1881,  9009,  40755,  176319,...];
G(x)^11: [1, 11,  88,  572,  3289, 17303,  85228,  398684,...];
G(x)^13: [1, 13, 117,  845,  5330, 30498, 162214,  814606,...];
G(x)^15: [1, 15, 150, 1190,  8160, 50388, 287470, 1540710,...]; ...
in which the main diagonal (A222052) forms this sequence like so:
[1/1, 3/3, 25/5, 210/7, 1881/9, 17303/11, 162214/13, 1540710/15,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sqrt(1/x*serreverse(x*(1-2*x-3*x^2)+x^2*O(x^n))),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(1/sqrt(1-2*x-3*x^2+x*O(x^n))^(2*n+1),n)/(2*n+1)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f.: sqrt( (1/x)*Series_Reversion( x*(1-2*x-3*x^2) ) ).
a(n) = [x^n] sqrt( 1/(1-2*x-3*x^2)^(2*n+1) ) / (2*n+1).
a(n) = A222052(n)/(2*n+1).

A222051 Central terms in rows of triangle A220178.

Original entry on oeis.org

1, 6, 150, 4200, 131670, 4360356, 149885736, 5287716720, 190170736470, 6941694002100, 256393942704900, 9561265547652000, 359399657792284200, 13600394660797333200, 517621830467456905200, 19798076590576557847200, 760517744810283004728150, 29325625363665142395552900
Offset: 0

Views

Author

Paul D. Hanna, Feb 06 2013

Keywords

Crossrefs

Programs

  • PARI
    /* As Central Terms in Rows of Triangle A220178: */
    {A220178(n, k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)), n, x), k, y)}
    {a(n)=A220178(2*n, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = (2*n+1)*binomial(2*n,n)*A222050(n), where the g.f. G(x) of A222050 satisfies: G(x) = sqrt(1 + 2*x*G(x)^4 + 3*x^2*G(x)^6).
a(n) = [x^n] d^(2*n)/dx^(2*n) (1+x+x^2)^(2*n) / (2*n)!, by definition.
Showing 1-2 of 2 results.