A222063 Triangle read by rows: coefficients of third-order hypergeometric-harmonic polynomials.
0, 0, 1, 0, 1, 7, 0, 1, 21, 47, 0, 1, 49, 282, 342, 0, 1, 105, 1175, 3420, 2754, 0, 1, 217, 4230, 22230, 41310, 24552, 0, 1, 441, 14147, 119700, 385560, 515592, 241128, 0, 1, 889, 45402, 581742, 2891700, 6530832, 6751584, 2592720, 0, 1, 1785, 142175, 2657340
Offset: 0
Examples
Triangle begins: 0 0 1 0 1 7 0 1 21 47 0 1 49 282 342 0 1 105 1175 3420 2754 ....
Links
- Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, 12 (2012), #A38.
Programs
-
PARI
hyp(n,alpha) = {x= y+O(y^(n+1)); gf = - log(1-x)/(1-x)^alpha; polcoeff(gf, n, y);} t(n, k) = {k!*(sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!)*hyp(k,3)}; \\ Michel Marcus, Feb 09 2013
Formula
T(n,k) = A008277(n,k)*A000142(k)*H3(k) where H3(k) is defined by g.f.:- log(1-x)/(1-x)^3. - Michel Marcus, Feb 09 2013
Extensions
More terms from Michel Marcus, Feb 09 2013