cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A222087 Numbers n for which A222084(n)= A222084(A222085(n)).

Original entry on oeis.org

1, 2, 6, 14, 15, 20, 22, 24, 33, 38, 46, 49, 51, 52, 62, 63, 86, 87, 91, 92, 93, 95, 118, 119, 121, 141, 142, 143, 145, 147, 148, 153, 158, 159, 165, 166, 169, 183, 198, 206, 210, 215, 217, 219, 244, 247, 249, 253, 262, 267, 270, 278, 279, 286, 287, 295, 301
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Similar to A037197 but using tau#(n), number of the least divisors of n whose LCM is equal to n, as defined in A222084, and sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085: tau#(n)=tau#(sigma#(n)).
If we add also the restriction tau(n)=tau(sigma(n)) we have: 2, 52, 1525, 83667, 116162,…

Examples

			n=20; tau#(20)=4, sigma#(20)=12 and tau#(sigma#(20))=tau#(12)=4.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222087:=proc(q)
    local a,b,c,j,n,t,v;
    print(1);
    for n from 2 to q do
      a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od; t:=j;
      a:=ifactors(v)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(v))])); b:=nops(divisors(v));
      for j from 1 to b do if a[j]=c then break; fi; od; if t=j then print(n);
    fi; od; end:
    A222087(10000000000);

A222088 Numbers n for which A222085(n)=A222085(n+1).

Original entry on oeis.org

5, 23, 44, 84, 132, 185, 335, 368, 1342, 2226, 3354, 4726, 7359, 7598, 8436, 10234, 12123, 18078, 18744, 19848, 20492, 20922, 21823, 21902, 23218, 24069, 24221, 31678, 36510, 36849, 40235, 45046, 46916, 49356, 49769, 50560, 51780, 52716, 53079, 59942, 60150
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Like A002961 but using sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085, instead of sigma(n):
sigma#(n)=sigma#(n+1).

Examples

			n=44; sigma#(44)=18 and sigma#(45)=18.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222088:=proc(q)
    local a,b,c,d,j,n,t,v;
    d:=1;
    for n from 2 to q do
      a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od;
      if d=v then print(n-1); fi; d:=v; od; end:
    A222088(1000000);
  • Mathematica
    s[n_] := Module[{sum=0, L=1}, Do[sum+=d; L = LCM[L, d]; If[L == n, Break[]], {d, Divisors[n]}]; sum]; s1=1; seq={}; Do[s2=s[n]; If[s1==s2, AppendTo[seq, n-1]]; s1=s2, {n, 2, 10^4}]; seq (* Amiram Eldar, Nov 05 2019 *)

A222084 Number of the least divisors of n whose LCM is equal to n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 5, 2, 4, 3, 3, 2, 6, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 6, 2, 3, 3, 5, 2, 5, 2, 4, 4, 3, 2, 8, 3, 5, 3, 4, 2, 7, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 5, 2, 4, 3, 4, 2, 7, 2, 3, 5, 4, 3, 5, 2, 7, 5, 3, 2, 6, 3, 3, 3
Offset: 1

Views

Author

Paolo P. Lava, Feb 07 2013

Keywords

Comments

If we write n as the product of its prime factors, n = p1^a1*p2^a2*p3^a3*...*pr^ar, then tau#(n) gives the number of divisors from 1 to max(p1^a1, p2^a2, p3^a3, ..., pr^ar).
In general tau#(n) <= tau(n).
Also, tau#(n) = tau(n) is A000961, tau#(n) < tau(n) is A024619.
For any prime number p tau(p) = tau#(p) = 2.
tau#(n) = 3 only for semiprimes (A001358).

Examples

			For n=40, the divisors are (1, 2, 4, 5, 8, 10, 20, 40), so tau(40)=8.
lcm(1, 2, 4, 5, 8) = 40, but lcm(1, 2, 4, 5) = 20 < 40, so tau#(40)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222084:=proc(q)
    local a,b,c,j,n; print(1);
    for n from 2 to q do a:=ifactors(n)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do if a[j]=c then break; fi; od; print(j); od; end:
    A222084(100000);
  • Mathematica
    Table[Count[ Divisors[n] , q_Integer /; q <= Max[Power @@@ FactorInteger[n]]], {n, 87}] (* Wouter Meeussen, Feb 09 2013 *)
  • PARI
    a(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k;} \\ Michel Marcus, Mar 13 2018

A222086 a(n) is the least number k for which A000005(k)/A222084(k) = n.

Original entry on oeis.org

1, 30, 360, 840, 11088, 18018, 1713600, 32760, 327600, 350064, 39437798400, 180180, 8532905472000, 47361600, 720720, 1750320
Offset: 1

Views

Author

Paolo P. Lava, Feb 12 2013

Keywords

Comments

a(17) <= 214555365177753600. a(18) = 3423420, a(20) = 4084080, a(24) = 6126120, a(30) = 46558512, a(32) = 38798760. - Hiroaki Yamanouchi, Oct 03 2014

Examples

			For k=18018, tau(k)=48: the 48 divisors of k are 1, 2, 3, 6, 7, 9, 11, 13, 14, 18, 21, 22, 26, 33, 39, 42, 63, 66, 77, 78, 91, 99, 117, 126, 143, 154, 182, 198, 231, 234, 273, 286, 429, 462, 546, 693, 819, 858, 1001, 1287, 1386, 1638, 2002, 2574, 3003, 6006, 9009, 18018.
The least common multiple of the first 8 divisors, (1, 2, 3, 6, 7, 9, 11, 13), is again 18018, but the least common multiple of the first 7 divisors, (1, 2, 3, 6, 7, 9, 11), is less than 18018.
Since tau#(k)=8 (see A222084 for the definition of tau#(n)), tau(k)/tau#(k) = 48/8 = 6, and since 18018 is the minimum number k to have this ratio, a(6)=18018.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222086:=proc(q)
    local a,b,c,d,j,n,t,v;
    v:=array(1..100); for j from 1 to 100 do v[j]:=0; od; t:=0;
    for n from 1 to q do
      a:=ifactors(n)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do if a[j]=c then break; fi; od;
      if type(tau(n)/j,integer)  then if tau(n)/j=t+1
           then t:=t+1; lprint(t,n); while v[t+1]>0 do t:=t+1; lprint(t,v[t]); od;
           else if tau(n)/j>t+1 then if v[tau(n)/j]=0 then v[tau(n)/j]:=n; fi; fi;
    fi; fi; od; end:
    A222086(1000000000000000);

Extensions

a(1) corrected and a(11), a(13) and a(14) added by Hiroaki Yamanouchi, Oct 03 2014

A222089 Where records occur in A222084.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 48, 96, 192, 384, 480, 768, 960, 1920, 3840, 5760, 7680, 11520, 19440, 23040, 26880, 46080, 53760, 80640, 107520, 161280, 215040, 322560, 612360, 645120, 967680, 1224720, 1290240, 1935360, 2580480, 3870720, 5160960, 6451200, 7096320
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Like A002182 but using tau#(n), as defined in A222084, instead of tau(n).

Examples

			tau#(8)=4 and not until n=16 this value is overtaken: tau#(16)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222089:=proc(q)
    local a,b,c,j,n,t;
    t:=0;
    for n from 1 to q do
    a:=ifactors(n)[2]; b:=nops(a); c:=0;
    for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
    a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
    for j from 1 to b do if a[j]=c then break; fi; od;
    if j>t then t:=j; print(n); fi;
    od; end:
    A222089(10000000000);
  • Mathematica
    f[n_]:= Module[{d = Divisors[n], k = 1}, While [LCM@@d[[1;;k]] != n, k++]; k]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, fm=f1; AppendTo[s,n]], {n, 1, 10000}]; s (* Amiram Eldar, Jan 19 2019 *)
  • PARI
    f(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k; } \\ A222084
    lista(nn) = {my(m=0, nm); for( n=1, nn, if ((nm=f(n)) > m, print1(n, ", "); m = nm););} \\ Michel Marcus, Jan 19 2019

Extensions

a(2) inserted and a(32)-a(39) added by Amiram Eldar, Jan 19 2019
Showing 1-5 of 5 results.