cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222089 Where records occur in A222084.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 48, 96, 192, 384, 480, 768, 960, 1920, 3840, 5760, 7680, 11520, 19440, 23040, 26880, 46080, 53760, 80640, 107520, 161280, 215040, 322560, 612360, 645120, 967680, 1224720, 1290240, 1935360, 2580480, 3870720, 5160960, 6451200, 7096320
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Like A002182 but using tau#(n), as defined in A222084, instead of tau(n).

Examples

			tau#(8)=4 and not until n=16 this value is overtaken: tau#(16)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222089:=proc(q)
    local a,b,c,j,n,t;
    t:=0;
    for n from 1 to q do
    a:=ifactors(n)[2]; b:=nops(a); c:=0;
    for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
    a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
    for j from 1 to b do if a[j]=c then break; fi; od;
    if j>t then t:=j; print(n); fi;
    od; end:
    A222089(10000000000);
  • Mathematica
    f[n_]:= Module[{d = Divisors[n], k = 1}, While [LCM@@d[[1;;k]] != n, k++]; k]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, fm=f1; AppendTo[s,n]], {n, 1, 10000}]; s (* Amiram Eldar, Jan 19 2019 *)
  • PARI
    f(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k; } \\ A222084
    lista(nn) = {my(m=0, nm); for( n=1, nn, if ((nm=f(n)) > m, print1(n, ", "); m = nm););} \\ Michel Marcus, Jan 19 2019

Extensions

a(2) inserted and a(32)-a(39) added by Amiram Eldar, Jan 19 2019