A222117 Goodstein sequence starting with 15.
15, 111, 1283, 18752, 326593, 6588344, 150994943, 3524450280, 100077777775, 3138578427934, 106993479003783, 3937376861542204, 155568096352467863, 6568408356994335930, 295147905181357143919, 14063084452070776884879, 708235345355342213988445
Offset: 0
Examples
The first terms are: a(0) = 2^(2+1) + 2^2 + 2^1 + 2^0 = 15; a(1) = 3^(3+1) + 3^3 + 3^1 + 3^0 - 1 = 111; a(2) = 4^(4+1) + 4^4 + 4^1 - 1 = 4^(4+1) + 4^4 + 3*4^0 = 1283; a(3) = 5^(5+1) + 5^5 + 3*5^0 - 1 = 5^(5+1) + 5^5 + 2*5^0 = 18752; a(4) = 6^(6+1) + 6^6 + 2*6^0 - 1 = 6^(6+1) + 6^6 + 1 = 326593; a(5) = 7^(7+1) + 7^7 + 1 - 1 = 6588344; a(6) = 8^(8+1) + 8^8 - 1 = 150994943.
Links
- Nicholas Matteo, Table of n, a(n) for n = 0..383 (first 249 terms from Reinhard Zumkeller)
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic, Vol. 9, No. 2, Jun., 1944
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Programs
-
Haskell
-- See Link
-
PARI
lista(nn) = {print1(a = 15, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); } \\ Michel Marcus, Feb 24 2016
Extensions
Offset changed to 0 by Nicholas Matteo, Aug 21 2019
Comments