cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222144 T(n,k) = number of n X k 0..4 arrays with no entry increasing mod 5 by 4 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 4, 4, 16, 52, 16, 64, 676, 676, 64, 256, 8788, 28564, 8788, 256, 1024, 114244, 1206964, 1206964, 114244, 1024, 4096, 1485172, 50999956, 165770032, 50999956, 1485172, 4096, 16384, 19307236, 2154990196, 22767656980, 22767656980
Offset: 1

Views

Author

R. H. Hardin, Feb 09 2013

Keywords

Comments

1/5 the number of 5-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.......1.............4...................16.........................64
.......4............52..................676.......................8788
......16...........676................28564....................1206964
......64..........8788..............1206964..................165770032
.....256........114244.............50999956................22767656980
....1024.......1485172...........2154990196..............3127020364012
....4096......19307236..........91058563924............429480137694664
...16384.....250994068........3847656513844..........58986884432558548
...65536....3262922884......162581749707796........8101544704688334244
..262144...42417997492.....6869850581244916.....1112705429924911477552
.1048576..551433967396...290283793189916884...152824358676750267429220
.4194304.7168641576148.12265868026121849524.20989638386627725143014812
...
Some solutions for n=3, k=4:
..0..0..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..1..1
..1..1..2..2....1..1..1..2....0..1..3..3....0..2..2..0....0..1..2..3
..3..4..0..0....1..3..1..3....2..2..0..1....0..2..2..2....1..4..2..3
		

Crossrefs

Columns 1-7 are A000302(n-1), A222138, A222139, A222140, A222141, A222142, A222143.
Main diagonal is A068255.
Cf. A078099 (3 colorings), A222444 (4 colorings), A198906 (unlabeled 5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 4 * (6*A198906(n,k) - 3*A207997(n,k) - 2) for n*k > 1. - Andrew Howroyd, Jun 27 2017

A355883 Number of ways to 5-color a 3 X n grid ignoring the variations of two colors.

Original entry on oeis.org

4, 169, 7141, 301741, 12749989, 538747549, 22764640981, 961914128461, 40645437426949, 1717462645311229, 72570948297479221, 3066467006530462381, 129572785291363217509, 5475065165353811151709, 231347489347123368595861, 9775529461439509493215501
Offset: 1

Views

Author

Gerhard Kirchner, Jul 24 2022

Keywords

Comments

See A355881 for a general formula.

Examples

			a(1) = 4, 5 colors 1,2,3,4,5: 121, 123, 124, 125.
The first two colors do not vary.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{45, -116}, {4, 169}, 20] (* Paolo Xausa, Oct 03 2024 *)

Formula

a(n) = A222139(n)/4.
G.f.: x*(4-11*x)/(1-45*x+116*x^2).
a(n) = 45*a(n-1) - 116*a(n-2) with a(1) = 4, a(2) = 169.
a(n) = 2^(-3-n)*((45 - sqrt(1561))^n*(11*sqrt(1561) - 433) + (45 + sqrt(1561))^n*(11*sqrt(1561) + 433))/(29*sqrt(1561)). - Stefano Spezia, Jul 24 2022
Showing 1-2 of 2 results.