cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222188 Table read by antidiagonals: number of toroidal m X n binary arrays, allowing rotation and/or reflection of the rows and/or the columns.

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 6, 13, 13, 6, 8, 34, 36, 34, 8, 13, 78, 158, 158, 78, 13, 18, 237, 708, 1459, 708, 237, 18, 30, 687, 4236, 14676, 14676, 4236, 687, 30, 46, 2299, 26412, 184854, 340880, 184854, 26412, 2299, 46
Offset: 1

Views

Author

N. J. A. Sloane, Feb 12 2013

Keywords

Examples

			Array begins:
  2,  3,   4,     6,      8,      13,        18,         30, ...
  3,  7,  13,    34,     78,     237,       687,       2299, ...
  4, 13,  36,   158,    708,    4236,     26412,     180070, ...
  6, 34, 158,  1459,  14676,  184854,   2445918,   33888844, ...
  8, 78, 708, 14676, 340880, 8999762, 245619576, 6873769668, ...
  ...
		

Crossrefs

Main diagonal is A209251.
Cf. A184271.

Programs

  • Mathematica
    b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n); b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2) /(4*n), (2^(m*n/2) + 2^((m+2)*n/2))/(8*n)]; b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4*n); b2c[m_, n_] := If[OddQ[ m], Sum[If [OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8*n)]; b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n]; b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n-3)/2); b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2-4); a[m_, n_] := Module[{b}, If [OddQ[m], If [OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]]; Table[a[m - n+1, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Dec 05 2015, adapted from Michel Marcus's PARI script *)
  • PARI
    odd(n) = n%2;
    b1(m,n) = sumdiv(m, c, sumdiv(n, d, eulerphi(c)*eulerphi(d)*2^(m*n/lcm(c,d))))/(4*m*n);
    b2a(m,n) = if (odd(m), 2^((m+1)*n/2)/(4*n), (2^(m*n/2)+2^((m+2)*n/2))/(8*n));
    b2b(m,n) = sumdiv(n, d, if (d>=2, eulerphi(d)*2^((m*n)/d), 0))/(4*n);
    b2c(m,n) = if (odd(m), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^((m+1)*gcd(j,n)/2)-2^(m*gcd(j,n))))/(4*n), sum(j=1, n-1, if (odd(n/gcd(j,n)), 2^(m*gcd(j,n)/2)+2^((m+2)*gcd(j,n)/2)-2^(m*gcd(j,n)+1)))/(8*n));
    b2(m,n) = b2a(m,n) + b2b(m,n) + b2c(m,n);
    b3(m,n) = b2(n,m);
    b4oo(m,n) = 2^((m*n - 3)/2);
    b4eo(m,n) = 3*2^(m*n/2 - 3);
    b4ee(m,n) = 7*2^(m*n/2 - 4);
    a(m,n) = {if (odd(m), if (odd(n), b = b4oo(m,n), b = b4eo(m,n)), if (odd(n), b = b4eo(m,n), b = b4ee(m,n))); b += b1(m,n) + b2(m,n) + b3(m,n); return (b);}
    \\ Michel Marcus, Feb 13 2013

A368253 Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by two tiles that are fixed under these reflections.

Original entry on oeis.org

2, 3, 3, 6, 7, 4, 10, 24, 13, 6, 20, 76, 74, 34, 8, 36, 288, 430, 378, 78, 13, 72, 1072, 3100, 4756, 1884, 237, 18, 136, 4224, 23052, 70536, 53764, 11912, 687, 30, 272, 16576, 179736, 1083664, 1689608, 709316, 77022, 2299, 46
Offset: 1

Views

Author

Peter Kagey, Dec 19 2023

Keywords

Examples

			Table begins:
  n\k |  1   2     3      4        5          6
  ----+----------------------------------------
    1 |  2   3     6     10       20         36
    2 |  3   7    24     76      288       1072
    3 |  4  13    74    430     3100      23052
    4 |  6  34   378   4756    70536    1083664
    5 |  8  78  1884  53764  1689608   53762472
    6 | 13 237 11912 709316 44900448 2865540112
		

Crossrefs

Cf. A005418 (n=1), A225826 (n=2), A000029 (k=1), A222187 (k=2).

Programs

  • Mathematica
    A368253[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*If[EvenQ[n], 1/2 (2^((n*m + 2 m)/2) + 2^(n*m/2)), 2^((n*m + m)/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*Which[EvenQ[m], 2^(n*m/2), OddQ[m] && EvenQ[n], (3/2*2^(n*m/2)), OddQ[m] && OddQ[n], 2^((n*m + 1)/2)])
Showing 1-2 of 2 results.