cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A231829 Square array read by antidiagonals: T(m,n) = number of ways of creating a closed, simple loop on an m X n rectangular lattice.

Original entry on oeis.org

1, 3, 3, 6, 13, 6, 10, 40, 40, 10, 15, 108, 213, 108, 15, 21, 275, 1049, 1049, 275, 21, 28, 681, 5034, 9349, 5034, 681, 28, 36, 1664, 23984, 80626, 80626, 23984, 1664, 36, 45, 4040, 114069, 692194, 1222363, 692194, 114069, 4040, 45
Offset: 1

Views

Author

Douglas Boffey, Nov 14 2013

Keywords

Comments

This sequence is read in a table, thus:
m ->
1, 3, 6, 10, …
n 3, 13, 40, …
| 6, 40, …
v 10, …
This sequence gives the number of closed, simple loops on a rectangular lattice of dots, where the edges of the loop can be horizontal or vertical.
This is also the number of solutions to an unclued slitherlink puzzle.
Main diagonal is A140517. - Joerg Arndt, Sep 01 2014
Equivalently, the number of cycles in the grid graph P_{m+1} X P_{n+1}. - Andrew Howroyd, Jun 12 2017

Examples

			Table starts:
=================================================================
m\n|  1    2      3       4         5           6            7
---|-------------------------------------------------------------
1  |  1    3      6      10        15          21           28...
2  |  3   13     40     108       275         681         1664...
3  |  6   40    213    1049      5034       23984       114069...
4  | 10  108   1049    9349     80626      692194      5948291...
5  | 15  275   5034   80626   1222363    18438929    279285399...
6  | 21  681  23984  692194  18438929   487150371  12947640143...
7  | 28 1664 114069 5948291 279285399 12947640143 603841648931...
... - _Andrew Howroyd_, Jun 12 2017
a(2,2) = 13, thus:
1)        2)        3)        4)        5)
+-+ +     + +-+     + + +     + + +     +-+ +
| |         | |                         | |
+-+ +     + +-+     +-+ +     + +-+     + + +
                    | |         | |     | |
+ + +     + + +     +-+ +     + +-+     +-+ +
6)        7)        8)        9)        10)
+ +-+     +-+-+     + + +     +-+ +     + +-+
  | |     |   |               | |         | |
+ + +     +-+-+     +-+-+     + +-+     +-+ +
  | |               |   |     |   |     |   |
+ +-+     + + +     +-+-+     +-+-+     +-+-+
11)       12)       13)
+-+-+     +-+-+     +-+-+
|   |     |   |     |   |
+-+ +     + +-+     + + +
  | |     | |       |   |
+ +-+     +-+ +     +-+-+
		

Crossrefs

Main diagonal is A140517.

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A231829(n, k):
        universe = tl.grid(n, k)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    print([A231829(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)])  # Seiichi Manyama, Nov 24 2020

A222203 Number of ways to cover the n X n+1 grid graph by vertex disjoint cycles.

Original entry on oeis.org

1, 3, 54, 1140, 99051, 13049563, 6044482889, 4738211572702, 11986520595161863, 54755153078468134960, 764291947227525464744293, 20119942924108379011391597989, 1558052539448513320447263528275071, 234788223520702255614480389250160811898, 101199388044301804167035198499446336399419451, 86918369741985767628242106496018767545685968221295
Offset: 2

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Crossrefs

A003693 Number of 2-factors in P_4 X P_n.

Original entry on oeis.org

0, 2, 3, 18, 54, 222, 779, 2953, 10771, 40043, 147462, 545603, 2013994, 7442927, 27490263, 101563680, 375176968, 1386004383, 5120092320, 18914660608, 69873991466, 258127586367, 953569519203, 3522660270539
Offset: 1

Views

Author

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 7, -2, -3, 1}, {0, 2, 3, 18, 54}, 30] (* Jean-François Alcover, Sep 21 2019 *)

Formula

a(n) = 2a(n-1) + 7a(n-2) - 2a(n-3) - 3a(n-4) + a(n-5), n > 5.
G.f.: (-x*(x-1)*(x-2)*(x+1))/(-1 + x^5 - 3*x^4 - 2*x^3 + 7*x^2 + 2*x). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009

A145400 Number of 2-factors in P_6 X P_n.

Original entry on oeis.org

0, 5, 9, 222, 1140, 13903, 99051, 972080, 7826275, 71053230, 599141127, 5285091303, 45349095730, 395755191515, 3418116104881, 29709767180643, 257232791130155, 2232466696767889, 19346930092499853, 167813061128260612, 1454798219804865516, 12616086588695738786
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2009

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Formula

a(n) = 5*a(n-1) + 49*a(n-2) - 116*a(n-3) - 363*a(n-4) + 627*a(n-5) + 544*a(n-6) - 1061*a(n-7) + 133*a(n-8) + 264*a(n-9) - 47*a(n-10) - 26*a(n-11) + 3*a(n-12) + a(n-13) for n > 13.
G.f.: x^2*(5 - 16*x - 68*x^2 + 169*x^3 + 184*x^4 - 440*x^5 + 41*x^6 + 159*x^7 - 24*x^8 - 21*x^9 + 2*x^10 + x^11)/(1 - 5*x - 49*x^2 + 116*x^3 + 363*x^4 - 627*x^5 - 544*x^6 + 1061*x^7 - 133*x^8 - 264*x^9 + 47*x^10 + 26*x^11 - 3*x^12 - x^13). - Andrew Howroyd, Oct 04 2017

Extensions

Terms a(14) and beyond from Andrew Howroyd, Oct 04 2017

A145417 Number of 2-factors in P_8 X P_n.

Original entry on oeis.org

0, 13, 27, 2953, 24360, 972080, 13049563, 360783593, 6044482889, 142205412782, 2645920282312, 57787769198498, 1130122135817708, 23838761889677477, 477334902804794530, 9905649696435264827, 200572437515846530901, 4130348948437378850158
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2009

Keywords

References

  • F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.

Crossrefs

Formula

Recurrence:
a(1) = 0,
a(2) = 13,
a(3) = 27,
a(4) = 2953,
a(5) = 24360,
a(6) = 972080,
a(7) = 13049563,
a(8) = 360783593,
a(9) = 6044482889,
a(10) = 142205412782,
a(11) = 2645920282312,
a(12) = 57787769198498,
a(13) = 1130122135817708,
a(14) = 23838761889677477,
a(15) = 477334902804794530,
a(16) = 9905649696435264827,
a(17) = 200572437515846530901,
a(18) = 4130348948437378850158,
a(19) = 84074883624291031055071,
a(20) = 1725061733607816846672084,
a(21) = 35201911945083165877105598,
a(22) = 721041937227213471236222936,
a(23) = 14731026760739434523775920272,
a(24) = 301492247130186410656766864436,
a(25) = 6162966556594442193757310209147,
a(26) = 126086101870795129720839096783333,
a(27) = 2578070083185284447937587182277129,
a(28) = 52734387801729163635906223494385644,
a(29) = 1078388240037660942562424414577181926,
a(30) = 22056541466571843558470704997624920958,
a(31) = 451070070689312442562501030339580527821,
a(32) = 9225477593066296020350369342487285559224,
a(33) = 188671988477305551144936342851950180268541,
a(34) = 3858726953408688228729004487413425843715888,
a(35) = 78916582053879579831149431468113368147807393,
a(36) = 1613990623415047770881237325964870382681263773,
a(37) = 33008659899083829723098251801948045543305771504,
a(38) = 675085532254115719882540973806685632932538969963,
a(39) = 13806606434855907791563611600265129790934630275875,
a(40) = 282368982002683765432041412891639191366286828541983,
a(41) = 5774916734695662624117282233886060904936699004411462,
a(42) = 118106924720040350256778966063911938302901243885821967,
a(43) = 2415485198293035324333076932461513145106982243926222725, and
a(n) = 10a(n-1) + 397a(n-2) - 2280a(n-3) - 41718a(n-4) + 171740a(n-5)
+ 1774768a(n-6) - 6621030a(n-7) - 36498440a(n-8) + 142302403a(n-9) + 378226103a(n-10)
- 1722824637a(n-11) - 1841136643a(n-12) + 11820333398a(n-13) + 2592291604a(n-14) - 47333298485a(n-15)
+ 11152811093a(n-16) + 115741226920a(n-17) - 56392421244a(n-18) - 180338596048a(n-19) + 113066783284a(n-20)
+ 185447332605a(n-21) - 129254123956a(n-22) - 129334594126a(n-23) + 92695904156a(n-24) + 62261558431a(n-25)
- 43387609685a(n-26) - 20799137282a(n-27) + 13474013361a(n-28) + 4776521864a(n-29) - 2787760272a(n-30)
- 734922053a(n-31) + 383508601a(n-32) + 72495666a(n-33) - 34918980a(n-34) - 4271202a(n-35)
+ 2078603a(n-36) + 129022a(n-37) - 77626a(n-38) - 773a(n-39) + 1644a(n-40)
- 54a(n-41) - 15a(n-42) + a(n-43).
a(n) = 14*a(n-1) + 331*a(n-2) - 3474*a(n-3) - 24357*a(n-4) + 237534*a(n-5) + 541266*a(n-6) - 6604103*a(n-7) - 1905497*a(n-8) + 85855152*a(n-9) - 60009003*a(n-10) - 545836271*a(n-11) + 672927757*a(n-12) + 1747850343*a(n-13) - 2763674623*a(n-14) - 2917536240*a(n-15) + 5513512152*a(n-16) + 2653029943*a(n-17) - 5852097578*a(n-18) - 1465977019*a(n-19) + 3471750395*a(n-20) + 568784352*a(n-21) - 1167520145*a(n-22) - 154667330*a(n-23) + 221656480*a(n-24) + 23823457*a(n-25) - 24542626*a(n-26) - 1818710*a(n-27) + 1646233*a(n-28) + 57030*a(n-29) - 66339*a(n-30) + 348*a(n-31) + 1479*a(n-32) - 61*a(n-33) - 14*a(n-34) + a(n-35) for n > 35. - Andrew Howroyd, Oct 04 2017

Extensions

Terms a(17) and beyond from Andrew Howroyd, Oct 04 2017

A222204 Write n=3i+j, 0<=j<3; a(n) = number of ways to cover the r X s grid graph by vertex disjoint cycles, where (r,s) = (2i+2, 2i+2) (if j=0), (2i+2, 2i+3) (if j=1) or (2i+3, 2i+4) (if j=2).

Original entry on oeis.org

1, 1, 3, 18, 54, 1140, 13903, 99051, 13049563, 360783593, 6044482889, 4738211572702, 303872744726644, 11986520595161863, 54755153078468134960, 8217125138015950451626, 764291947227525464744293, 20119942924108379011391597989, 7095967027221343377167292602835, 1558052539448513320447263528275071
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2013

Keywords

Comments

An interleaving of A222202 and A222203.

Crossrefs

Showing 1-6 of 6 results.