A231829 Square array read by antidiagonals: T(m,n) = number of ways of creating a closed, simple loop on an m X n rectangular lattice.
1, 3, 3, 6, 13, 6, 10, 40, 40, 10, 15, 108, 213, 108, 15, 21, 275, 1049, 1049, 275, 21, 28, 681, 5034, 9349, 5034, 681, 28, 36, 1664, 23984, 80626, 80626, 23984, 1664, 36, 45, 4040, 114069, 692194, 1222363, 692194, 114069, 4040, 45
Offset: 1
Examples
Table starts: ================================================================= m\n| 1 2 3 4 5 6 7 ---|------------------------------------------------------------- 1 | 1 3 6 10 15 21 28... 2 | 3 13 40 108 275 681 1664... 3 | 6 40 213 1049 5034 23984 114069... 4 | 10 108 1049 9349 80626 692194 5948291... 5 | 15 275 5034 80626 1222363 18438929 279285399... 6 | 21 681 23984 692194 18438929 487150371 12947640143... 7 | 28 1664 114069 5948291 279285399 12947640143 603841648931... ... - _Andrew Howroyd_, Jun 12 2017 a(2,2) = 13, thus: 1) 2) 3) 4) 5) +-+ + + +-+ + + + + + + +-+ + | | | | | | +-+ + + +-+ +-+ + + +-+ + + + | | | | | | + + + + + + +-+ + + +-+ +-+ + 6) 7) 8) 9) 10) + +-+ +-+-+ + + + +-+ + + +-+ | | | | | | | | + + + +-+-+ +-+-+ + +-+ +-+ + | | | | | | | | + +-+ + + + +-+-+ +-+-+ +-+-+ 11) 12) 13) +-+-+ +-+-+ +-+-+ | | | | | | +-+ + + +-+ + + + | | | | | | + +-+ +-+ + +-+-+
Links
- Douglas Boffey and Andrew Howroyd, Table of n, a(n) for n = 1..325 (terms 1..70 from Douglas Boffey)
- Wikipedia, Slitherlink
Crossrefs
Programs
-
Python
# Using graphillion from graphillion import GraphSet import graphillion.tutorial as tl def A231829(n, k): universe = tl.grid(n, k) GraphSet.set_universe(universe) cycles = GraphSet.cycles() return cycles.len() print([A231829(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Nov 24 2020
Comments