A222263 Odd numbers n such that 2n/sigma(n) - 1 = 1/x for some positive integer x.
1, 3, 15, 135, 315, 585, 819, 1155, 1365, 1485, 2295, 4455, 9009, 9405, 9945, 11115, 13923, 13965, 16965, 33705, 34335, 40365, 43785, 43875, 63063, 63855, 84825, 90675, 106425, 108927, 130815, 209385, 236115, 262845, 387387, 396495, 397575, 449295, 483945
Offset: 1
Keywords
Examples
For a(3)=15, we have sigma(15)=sigma(3*5)=4*6=24, thus 2*15/sigma(15) = 30/24 = 1+1/4. Here, x=4, and if 4 was assumed to be prime, then sigma'(4)=1+4=5 (*) and sigma'(15*4) = sigma(15)*sigma'(4) = 24*5 = 120 = 2*(15*4), i.e. 15*4 is a spoof perfect number. (*) Here, sigma' is the "freestyle" sum-of-divisors function which assumes that 4 is prime, i.e., sigma'(n)=sigma(n/4^k)*(4^(k+1)-1)/3 with 4^k || n, or k=valuation(n,4)=floor(A007814(n)/2).
Links
- Laszlo L. Toth, Table of n, a(n) for n = 1..692 (terms 1..143 terms from M. F. Hasler, 144..500 from Donovan Johnson).
- W. Banks, A. Guloglu, W. Nevans and F. Saidak, Descartes Numbers, in: Anatomy of Integers, 167-174, American Mathematical Society, Providence R.I., 2008.
- László Tóth, On the Density of Spoof Odd Perfect Numbers, arXiv:2101.09718 [math.NT], 2021.
Crossrefs
Cf. A000203 = sigma, the sum-of-divisors function.
Programs
-
PARI
forstep(n=1,9e9,2, numerator(2*n/sigma(n)-1)==1 & print1(n","))
Comments