A230166 Terms of A222263 such that 2n/sigma(n) - 1 = 1/2^k, for some integer k.
1, 3, 15, 135, 819, 1365, 1485, 2295, 9009, 13923, 63855, 387387, 397575, 667275, 14381055, 16410735, 99558459, 271543725, 3145425129, 7096702977, 741585912975, 2148325363107, 4847048133291, 39206559148911, 53164445037705, 130468907286855, 1229923663366167
Offset: 1
Keywords
Examples
a(1)=1 since 2*1/sigma(1)-1 = 2-1 = 1 = 1/2^0 is of the required form with k=0. For n=2, 2*2/sigma(2)-1 = 4/3-1 = 1/3 is not of the form 1/2^k. a(2)=3 since 2*3/sigma(3)-1 = 6/4-1 = 1/2 = 1/2^1 is of that form with k=1. For a(3)=15, 2*15/sigma(15)-1 = 30/(1+3+5+15)-1 = 30/24 - 1 = 6/24 = 1/2^2 is of this form with k=2.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..39
Crossrefs
Cf. A222263.
Programs
-
PARI
is_A230166(n)=(n=2*n/sigma(n)-1)>>valuation(n,2)==1 \\ - M. F. Hasler, Oct 12 2013
Extensions
a(21) from Donovan Johnson, Dec 28 2013
a(22)-a(27) from Hiroaki Yamanouchi, Sep 27 2014
Comments