cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222407 Digital roots of tribonacci numbers A000073.

Original entry on oeis.org

0, 0, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 20 2013

Keywords

Comments

From a(2) onwards, periodic with period length 39.
The period sums to 216 and contains no 3s. When divided into three sets of 13, further patterns are revealed in connection with A100402 (see link below). - Peter M. Chema, Dec 21 2016

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 0; elif n=2 then 1; else f(n-3)+f(n-2)+f(n-1); fi; end; # A000073
    P:=n->if n=0 then 0 else ((n-1) mod 9) + 1; fi; # A010888
    [seq(P(f(n)),n=0..200)];
  • Mathematica
    FixedPoint[Total@ IntegerDigits@ # &, #] & /@ CoefficientList[ Series[x^2/(1 - x - x^2 - x^3), {x, 0, 81}], x] (* Michael De Vlieger, Dec 22 2016 *)
    droot[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; droot/@LinearRecurrence[{1,1,1},{0,0,1},150] (* or *) PadRight[{0,0},150,{9,9,1,1,2,4,7,4,6,8,9,5,4,9,9,4,4,8,7,1,7,6,5,9,2,7,9,9,7,7,5,1,4,1,6,2,9,8,1}] (* Harvey P. Dale, Aug 21 2024 *)

Formula

a(n) = A010888(A000073(n)). - Michel Marcus, Dec 19 2016
From Chai Wah Wu, Jan 30 2018: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) - a(n-9) + a(n-10) - a(n-12) + a(n-13) - a(n-15) + a(n-16) - a(n-18) + a(n-19) - a(n-21) + a(n-22) - a(n-24) + a(n-25) - a(n-27) + a(n-28) - a(n-30) + a(n-31) - a(n-33) + a(n-34) - a(n-36) + a(n-37) for n > 38.
G.f.: (-9*x^38 + 8*x^36 - 16*x^35 - x^34 + 15*x^33 - 20*x^32 + 4*x^31 + 12*x^30 - 17*x^29 + 10*x^27 - 17*x^26 - 2*x^25 + 10*x^24 - 15*x^23 + 3*x^22 + 3*x^21 - 11*x^20 + 2*x^19 + 2*x^18 - 5*x^17 - 4*x^16 + x^15 - x^14 - 4*x^13 - 4*x^12 - x^11 + x^10 - 5*x^9 - 5*x^8 + 2*x^7 - 3*x^6 - 3*x^5 - x^4 - x^2)/(x^37 - x^36 + x^34 - x^33 + x^31 - x^30 + x^28 - x^27 + x^25 - x^24 + x^22 - x^21 + x^19 - x^18 + x^16 - x^15 + x^13 - x^12 + x^10 - x^9 + x^7 - x^6 + x^4 - x^3 + x - 1). (End)