A222407 Digital roots of tribonacci numbers A000073.
0, 0, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1, 2, 4, 7, 4, 6, 8, 9, 5, 4, 9, 9, 4, 4, 8, 7, 1, 7, 6, 5, 9, 2, 7, 9, 9, 7, 7, 5, 1, 4, 1, 6, 2, 9, 8, 1, 9, 9, 1, 1
Offset: 0
Keywords
Links
Programs
-
Maple
f:=proc(n) option remember; if n <= 1 then 0; elif n=2 then 1; else f(n-3)+f(n-2)+f(n-1); fi; end; # A000073 P:=n->if n=0 then 0 else ((n-1) mod 9) + 1; fi; # A010888 [seq(P(f(n)),n=0..200)];
-
Mathematica
FixedPoint[Total@ IntegerDigits@ # &, #] & /@ CoefficientList[ Series[x^2/(1 - x - x^2 - x^3), {x, 0, 81}], x] (* Michael De Vlieger, Dec 22 2016 *) droot[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; droot/@LinearRecurrence[{1,1,1},{0,0,1},150] (* or *) PadRight[{0,0},150,{9,9,1,1,2,4,7,4,6,8,9,5,4,9,9,4,4,8,7,1,7,6,5,9,2,7,9,9,7,7,5,1,4,1,6,2,9,8,1}] (* Harvey P. Dale, Aug 21 2024 *)
Formula
From Chai Wah Wu, Jan 30 2018: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) - a(n-6) + a(n-7) - a(n-9) + a(n-10) - a(n-12) + a(n-13) - a(n-15) + a(n-16) - a(n-18) + a(n-19) - a(n-21) + a(n-22) - a(n-24) + a(n-25) - a(n-27) + a(n-28) - a(n-30) + a(n-31) - a(n-33) + a(n-34) - a(n-36) + a(n-37) for n > 38.
G.f.: (-9*x^38 + 8*x^36 - 16*x^35 - x^34 + 15*x^33 - 20*x^32 + 4*x^31 + 12*x^30 - 17*x^29 + 10*x^27 - 17*x^26 - 2*x^25 + 10*x^24 - 15*x^23 + 3*x^22 + 3*x^21 - 11*x^20 + 2*x^19 + 2*x^18 - 5*x^17 - 4*x^16 + x^15 - x^14 - 4*x^13 - 4*x^12 - x^11 + x^10 - 5*x^9 - 5*x^8 + 2*x^7 - 3*x^6 - 3*x^5 - x^4 - x^2)/(x^37 - x^36 + x^34 - x^33 + x^31 - x^30 + x^28 - x^27 + x^25 - x^24 + x^22 - x^21 + x^19 - x^18 + x^16 - x^15 + x^13 - x^12 + x^10 - x^9 + x^7 - x^6 + x^4 - x^3 + x - 1). (End)
Comments