cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222412 Denominators in Taylor series expansion of (x/(exp(x) - 1))^(3/2)*exp(x/2).

Original entry on oeis.org

1, 4, 32, 384, 10240, 40960, 61931520, 49545216, 7927234560, 475634073600, 1993133260800, 177167400960, 48753634065776640, 195014536263106560, 39002907252621312000, 842462796656620339200, 2204424056667635712000, 79359266040034885632000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 28 2013

Keywords

Examples

			The first few fractions are 1, -1/4, -1/32, 5/384, 7/10240, -19/40960, -869/61931520, 715/49545216, ... = A222411/A222412. - _Petros Hadjicostas_, May 14 2020
		

Crossrefs

Programs

  • Maple
    gf:= (x/(exp(x)-1))^(3/2)*exp(x/2):
    a:= n-> denom(coeff(series(gf, x, n+3), x, n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 02 2013
  • Mathematica
    Series[(x/(Exp[x]-1))^(3/2)*Exp[x/2], {x, 0, 25}] // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Mar 18 2014 *)

Formula

Theorem: A241885(n)/A242225(n) = n!*A222411(n)/(A222412(n)*(-1)^n/(1-2*n)) = n!*A350194(n)/(A350154(n)*(2*n+1)). - David Broadhurst, Apr 23 2022 (see Link).