cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222444 T(n,k) = number of n X k 0..3 arrays with entries increasing mod 4 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

1, 3, 3, 9, 21, 9, 27, 147, 147, 27, 81, 1029, 2403, 1029, 81, 243, 7203, 39285, 39285, 7203, 243, 729, 50421, 642249, 1500183, 642249, 50421, 729, 2187, 352947, 10499787, 57289767, 57289767, 10499787, 352947, 2187, 6561, 2470629, 171655443
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2013

Keywords

Comments

1/4 the number of 4-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1..........3...............9..................27.......................81
......3.........21.............147................1029.....................7203
......9........147............2403...............39285...................642249
.....27.......1029...........39285.............1500183.................57289767
.....81.......7203..........642249............57289767...............5110723191
....243......50421........10499787..........2187822609.............455924913093
....729.....352947.......171655443.........83550197745...........40672916404629
...2187....2470629......2806303725.......3190677470643.........3628419487925547
...6561...17294403.....45878770089.....121847980727187.......323690312271131451
..19683..121060821....750047661027....4653221950068669.....28876324830999722133
..59049..847425747..12262131106083..177700725073710285...2576049100980154511889
.177147.5931980229.200467073061765.6786168386579878383.229808641254065144560647
...
Some solutions for n=3, k=4:
..0..0..0..2....0..0..2..0....0..2..0..0....0..2..0..2....0..0..2..3
..1..2..2..3....0..2..3..1....2..2..2..0....0..0..0..2....0..2..3..1
..2..2..3..1....2..0..1..3....2..2..0..0....2..0..1..3....1..2..0..1
		

Crossrefs

Columns 1-7 are A000244(n-1), A169634(n-1), A222439, A222440, A222441, A222442, A222443.
Main diagonal is A068254.
Cf. A078099 (3 colorings), A198715 (unlabeled 4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A222462 (8 colorings).

Formula

T(n,k) = 6*A198715(n,k) - 3 for n*k>1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 3*a(n-1).
k=2: a(n) = 7*a(n-1).
k=3: a(n) = 18*a(n-1) - 27*a(n-2).
k=4: a(n) = 45*a(n-1) - 267*a(n-2) + 263*a(n-3).
k=5: a(n) = 118*a(n-1) - 2811*a(n-2) + 22255*a(n-3) - 53860*a(n-4) - 54747*a(n-5) + 269406*a(n-6) - 175392*a(n-7).
k=6: [order 13]
k=7: [order 32]