A222457 Decimal expansion of the negated value of the digamma function at 1/6.
6, 3, 3, 2, 1, 2, 7, 5, 0, 5, 3, 7, 4, 9, 1, 4, 7, 9, 2, 4, 2, 4, 9, 6, 1, 5, 7, 4, 8, 4, 5, 7, 7, 7, 7, 2, 2, 5, 9, 0, 4, 9, 4, 8, 1, 3, 5, 3, 3, 6, 6, 9, 1, 4, 8, 0, 0, 3, 9, 9, 6, 1, 5, 7, 4, 1, 0, 0, 8, 1, 1, 8, 2, 2, 3, 4, 4, 9, 8, 3, 7, 7, 9, 8, 5, 2, 8
Offset: 1
Examples
Psi(1/6) = -6.3321275053749147924249615748457777225904948...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- Ernst D. Krupnikov and K. S. Kolbig, Some special cases of the generalized hypergeometric function _{q+1}F_q, J. Comp. Appl. Math. 78 (1997) 79-95
- Eric Weisstein's World of Mathematics, Gauss's Digamma Theorem.
- Wikipedia, Digamma function: special values.
- Index entries for sequences related to the digamma function
Programs
-
Mathematica
RealDigits[-PolyGamma[1/6], 10, 90][[1]]
-
Maxima
fpprec:90; ev(bfloat(-psi[0](1/6)));
-
PARI
-psi(1/6)
Formula
Psi(1/6) = -gamma -Pi*sqrt(3)/2 -3*log(3)/2 -2*log(2).