cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A279060 Number of divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möbius transform is the period-6 sequence {1, 0, 0, 0, 0, 0, ...}.

Examples

			a(14) = 2 because 14 has 4 divisors {1,2,7,14} among which 2 divisors {1,7} are of the form 6*k + 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(6 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(6 k + 1)/(1 - x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(Mod[#,6]==1&)],{n,0,120}] (* _Harvey P. Dale, Apr 27 2018 *)
  • PARI
    A279060(n) = if(!n,n,sumdiv(n, d, (1==(d%6)))); \\ Antti Karttunen, Jul 09 2017
    
  • Python
    from sympy import divisors
    def A279060(n): return sum(d%6 == 1 for d in divisors(n)) # David Radcliffe, Jun 19 2025

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(6*k)).
G.f.: Sum_{k>=0} x^(6*k+1)/(1 - x^(6*k+1)).
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A320001(n) + [1 == n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A035218(n) - A319995(n). (End)
a(n) = (A035218(n) + A035178(n)) / 2. - David Radcliffe, Jun 19 2025
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (1 - gamma)/6 = 0.686263..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320001 Number of proper divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320001(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A222458 Decimal expansion of the negated value of the digamma function at 5/6.

Original entry on oeis.org

8, 9, 0, 7, 2, 9, 4, 1, 2, 6, 7, 2, 2, 6, 1, 2, 4, 0, 6, 4, 2, 7, 2, 6, 8, 0, 1, 9, 1, 9, 3, 1, 0, 5, 2, 5, 7, 3, 8, 2, 9, 6, 0, 6, 9, 2, 5, 5, 4, 4, 7, 4, 2, 1, 2, 9, 4, 3, 4, 1, 3, 5, 1, 2, 4, 5, 7, 1, 1, 6, 3, 8, 8, 5, 5, 4, 3, 6, 7, 2, 6, 9, 3, 2, 9, 0, 9
Offset: 0

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(5/6) = -0.890729412672261240642726801919310525738296...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[5/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](5/6)));
  • PARI
    -psi(5/6)
    

Formula

Psi(5/6) = -gamma + Pi*sqrt(3)/2 - 3*log(3)/2 - 2*log(2).

A250129 Decimal expansion of the negated value of the digamma function at 1/8.

Original entry on oeis.org

8, 3, 8, 8, 4, 9, 2, 6, 6, 3, 2, 9, 5, 8, 5, 4, 8, 6, 7, 8, 0, 2, 7, 4, 2, 9, 2, 3, 0, 8, 6, 3, 4, 3, 0, 0, 0, 0, 5, 1, 4, 4, 6, 0, 4, 2, 4, 4, 9, 4, 7, 7, 1, 4, 3, 1, 1, 6, 0, 8, 6, 9, 2, 4, 6, 8, 2, 9, 0, 7, 8, 2, 3, 4, 4, 3, 3, 1, 3, 3, 4, 8, 8, 9, 7, 4, 1, 9, 3, 9, 7, 8, 0, 2, 1, 1, 5, 9, 0, 8, 4, 9, 4, 5, 8
Offset: 1

Views

Author

Jean-François Alcover, Jan 15 2015

Keywords

Examples

			Psi(1/8) = -8.388492663295854867802742923086343000051446...
		

Crossrefs

Programs

Formula

Psi(1/8) = -gamma - (1/2)*(1+sqrt(2))*Pi - sqrt(2)*arccoth(sqrt(2)) - 4*log(2).

A306716 Decimal expansion of the negated value of the digamma function at 1/10.

Original entry on oeis.org

1, 0, 4, 2, 3, 7, 5, 4, 9, 4, 0, 4, 1, 1, 0, 7, 6, 7, 9, 5, 1, 6, 8, 2, 1, 6, 2, 1, 9, 0, 1, 0, 0, 2, 5, 4, 0, 4, 2, 9, 1, 6, 4, 2, 5, 6, 2, 4, 4, 4, 1, 8, 8, 9, 2, 0, 3, 2, 6, 3, 9, 2, 0, 8, 4, 1, 0, 8, 8, 6, 7, 9, 1, 0, 8, 8, 1, 5, 2, 6, 2, 7, 0, 2, 3, 1, 5, 3, 9, 8, 3, 4, 9, 1, 2, 1, 9, 9, 2, 7, 9, 8, 0, 8, 2
Offset: 2

Views

Author

Vaclav Kotesovec, Aug 22 2019

Keywords

Examples

			Equals 10.4237549404110767951682162190100254042916425624441889203263920841...
		

Crossrefs

Programs

  • Maple
    evalf(-Psi(1/10), 102);
  • Mathematica
    RealDigits[-PolyGamma[1/10], 10, 105][[1]]
  • PARI
    -psi(1/10)

Formula

Psi(1/10) = -gamma - Pi*5^(1/4)*(sqrt(2 + sqrt(5))/2) - 2*log(2) - 5*log(5)/4 - 3*sqrt(5)*log((1 + sqrt(5))/2)/2, where gamma is the Euler-Mascheroni constant A001620.
Equals gamma - H(-9/10), H(z) the harmonic number. - Peter Luschny, Aug 22 2019
Showing 1-5 of 5 results.