cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256781 Decimal expansion of the generalized Euler constant gamma(1,8).

Original entry on oeis.org

7, 8, 8, 6, 3, 1, 3, 9, 0, 2, 0, 2, 0, 0, 2, 3, 6, 7, 4, 4, 3, 8, 8, 0, 8, 1, 9, 8, 3, 8, 9, 7, 6, 6, 6, 1, 9, 7, 8, 1, 1, 8, 2, 0, 4, 9, 2, 1, 0, 8, 8, 9, 2, 2, 5, 9, 4, 2, 5, 5, 8, 6, 2, 0, 2, 5, 3, 4, 0, 8, 6, 9, 6, 9, 1, 7, 7, 8, 6, 5, 0, 2, 5, 9, 9, 7, 8, 6, 7, 7, 1, 0, 1, 6, 0, 7, 4, 8, 0, 7, 3, 3, 5, 7, 2
Offset: 0

Views

Author

Jean-François Alcover, Apr 10 2015

Keywords

Examples

			0.788631390202002367443880819838976661978118204921...
		

Crossrefs

Cf. A001620 (EulerGamma), A016631, A228725 (gamma(1,2)), A250129, A256425 (gamma(1,3)), A256778-A256784 (selection of ruler-and-compass constructible gamma(r,k)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/8 + (1/8)*(Pi(R)/2*(Sqrt(2)+1) + Log(2) + Sqrt(2)*Log(Sqrt(2) + 1)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[-3/8*Log[2] - PolyGamma[1/8]/8, 10, 105] // First
  • PARI
    Euler/8 + 1/8*(Pi/2*(sqrt(2)+1) + log(2) + sqrt(2)*log(sqrt(2) + 1)) \\ Michel Marcus, Apr 10 2015
    

Formula

Equals EulerGamma/8 + 1/8*(Pi/2*(sqrt(2)+1) + log(2) + sqrt(2)*log(sqrt(2) + 1)).
Equals Sum_{n>=0} (1/(8n+1) - 1/4*arctanh(4/(8n+5))).
Equals -(psi(1/8) + log(8))/8 = -(A250129 + A016631)/8. - Amiram Eldar, Jan 07 2024

A306716 Decimal expansion of the negated value of the digamma function at 1/10.

Original entry on oeis.org

1, 0, 4, 2, 3, 7, 5, 4, 9, 4, 0, 4, 1, 1, 0, 7, 6, 7, 9, 5, 1, 6, 8, 2, 1, 6, 2, 1, 9, 0, 1, 0, 0, 2, 5, 4, 0, 4, 2, 9, 1, 6, 4, 2, 5, 6, 2, 4, 4, 4, 1, 8, 8, 9, 2, 0, 3, 2, 6, 3, 9, 2, 0, 8, 4, 1, 0, 8, 8, 6, 7, 9, 1, 0, 8, 8, 1, 5, 2, 6, 2, 7, 0, 2, 3, 1, 5, 3, 9, 8, 3, 4, 9, 1, 2, 1, 9, 9, 2, 7, 9, 8, 0, 8, 2
Offset: 2

Views

Author

Vaclav Kotesovec, Aug 22 2019

Keywords

Examples

			Equals 10.4237549404110767951682162190100254042916425624441889203263920841...
		

Crossrefs

Programs

  • Maple
    evalf(-Psi(1/10), 102);
  • Mathematica
    RealDigits[-PolyGamma[1/10], 10, 105][[1]]
  • PARI
    -psi(1/10)

Formula

Psi(1/10) = -gamma - Pi*5^(1/4)*(sqrt(2 + sqrt(5))/2) - 2*log(2) - 5*log(5)/4 - 3*sqrt(5)*log((1 + sqrt(5))/2)/2, where gamma is the Euler-Mascheroni constant A001620.
Equals gamma - H(-9/10), H(z) the harmonic number. - Peter Luschny, Aug 22 2019

A001533 a(n) = (8*n+1)*(8*n+7).

Original entry on oeis.org

7, 135, 391, 775, 1287, 1927, 2695, 3591, 4615, 5767, 7047, 8455, 9991, 11655, 13447, 15367, 17415, 19591, 21895, 24327, 26887, 29575, 32391, 35335, 38407, 41607, 44935, 48391, 51975, 55687, 59527, 63495, 67591, 71815, 76167, 80647, 85255, 89991, 94855, 99847, 104967
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Aug 18 2022: (Start)
This is A028560(8*n+1), and thus a(n) + 9 is a square. (See formulas)
7 is the only prime number of this sequence in which all odd prime factors occur.
Each prime factor p appears exactly twice in any interval of p consecutive terms. If a(m) and a(n) are within such an interval containing p, then m + n == -1 (mod p). (End)

Crossrefs

Programs

Formula

a(n) = 4*A001539(n) - 5.
a(n) = 128*n + a(n-1) with a(0)=7. - Vincenzo Librandi, Nov 12 2010
Sum_{n>=0} 1/a(n) = (Psi(7/8)-Psi(1/8))/48 = 0.1580099..., see A250129. - R. J. Mathar, May 30 2022 [ = (sqrt(2)+1)*Pi/48. - Amiram Eldar, Sep 08 2022]
From Klaus Purath, Aug 18 2022: (Start)
a(n) = A028560(8*n+1).
a(n) + 9 = ((a(n+1) - a(n-1))/32)^2 = A017113(n)^2.
a(2*n) = (a(n+1) - a(n-1))*n + 7. (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017077(n)*A004771(n).
Sum_{n>=0} (-1)^n/a(n) = (cos(Pi/8) * log(cot(Pi/16)) + sin(Pi/8) * log(cot(3*Pi/16)))/12.
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/8)*cos(sqrt(5/2)*Pi/4).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/8)*cos(sqrt(2)*Pi/4). (End)
G.f.: -(7+114*x+7*x^2)/(x-1)^3. - R. J. Mathar, Apr 23 2024
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(7 + 64*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A005570 Number of walks on cubic lattice.

Original entry on oeis.org

17, 50, 99, 164, 245, 342, 455, 584, 729, 890, 1067, 1260, 1469, 1694, 1935, 2192, 2465, 2754, 3059, 3380, 3717, 4070, 4439, 4824, 5225, 5642, 6075, 6524, 6989, 7470, 7967, 8480, 9009, 9554, 10115, 10692, 11285, 11894, 12519, 13160, 13817, 14490, 15179, 15884, 16605
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A158057.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [8*n^2 + 9*n : n in [1..40]]; // Vincenzo Librandi, Nov 05 2014
  • Mathematica
    CoefficientList[Series[(17 - x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 05 2014 *)
  • PARI
    Vec((17-x)/(1-x)^3 + O(x^50)) \\ Michel Marcus, Nov 05 2014
    

Formula

a(n) = 8*n^2 + 9*n.
G.f.: (17-x)/(1-x)^3. Simon Plouffe in his 1992 dissertation.
a(n) = 16*A000217(n) + n. - Jon Perry, Nov 05 2014
Sum_{n>=1} 1/a(n) = 80/81 +Psi(1/8)/9+gamma/9 = 0.11973.. see A001620 and A250129. - R. J. Mathar, May 30 2022
Sum_{n>=1} 1/a(n) = 80/81 - (sqrt(2)+1)*Pi/18 - log(1+sqrt(2))*sqrt(2)/9 -4*log(2)/9. - Amiram Eldar, Sep 10 2022
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: exp(x)*x*(17 + 8*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Formula and more terms from Jeffrey Shallit, Aug 15 1995
Showing 1-4 of 4 results.