cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A319995 Number of divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A001620, A016629, A222458 (psi(5/6)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A319995(n) = if(!n,n,sumdiv(n, d, (5==(d%6))));

Formula

a(n) = A035218(n) - A279060(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (1 - gamma)/6 = -0.220635..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A035218 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 36.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 3, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 1, 2, 3, 2, 3, 2, 2, 2, 2, 4
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of factors (over Q) of the polynomial x^(2n) - x^n + 1. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
This sequence is multiplicative. Just as (A001227)(n) is the number of ways to write n as differences of 3-gonal numbers, this sequence is the number of ways to write n as difference of (-1)-gonal numbers. If p_e(n):=1/2*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=-1. - Volker Schmitt (clamsi(AT)gmx.net), Oct 11 2004
a(n) is the number of divisors of n not divisible by 2 or 3. For example, a(36)=1 because 1 is the only such divisor of 36. a(10) = 2 because we count the divisors 1 and 5. - Geoffrey Critzer, Feb 15 2015

Crossrefs

Programs

  • Maple
    res:=1; ifac:=op(ifactors(i))[2]; for pfac in ifac do; if pfac[1]>3 then res:=res*(pfac[2]+1); a(n):=res;
  • Mathematica
    nn = 81; f[list_, i] := list[[i]]; a = Prepend[Drop[Table[Boole[Min[FactorInteger[n][[All, 1]]] > 3], {n, 1, nn}], 1], 1]; b = Table[1, {nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 15 2015 *)
    f[p_, e_] := If[p >= 5, e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    m=36; direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, (d % 2) && (d % 3)); \\ Michel Marcus, Feb 16 2015

Formula

a(n) = d(6n) - d(3n) - d(2n) + d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=e+1 if p>3. Inverse Möbius transform is periodic with 1, 0, 0, 0, 1, 0. - Volker Schmitt (clamsi(AT)gmx.net), Oct 11 2004
Dirichlet g.f.: zeta(s)^2*(1 - 1/2^s)*(1 - 1/3^s). - Geoffrey Critzer, Feb 15 2015
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A279060(n) + A319995(n).
a(n) = A320015(n) + ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
(End)
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma + log(12)/2 - 1)/3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 29 2019

Extensions

More terms from Antti Karttunen, Oct 03 2018

A359305 Number of divisors of 6*n-1 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Comments

Also number of divisors of 6*n-1 of form 6*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 6*n - 1]/2; Array[a, 100] (* Amiram Eldar, Dec 26 2022 *)
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==1);
    
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(5*k-4)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-1) = A319995(6*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(6*k-5)).
From Amiram Eldar, Dec 26 2022: (Start)
a(n) = A000005(A016969(n-1))/2.
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 3*log(2) + 2*log(3))*n/6 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). (End)

A320001 Number of proper divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320001(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A140213 Product_{h|n and h mod 6 = 1} h; product of divisors of n of the form 6*k + 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 13, 7, 1, 1, 1, 1, 19, 1, 7, 1, 1, 1, 25, 13, 1, 7, 1, 1, 31, 1, 1, 1, 7, 1, 37, 19, 13, 1, 1, 7, 43, 1, 1, 1, 1, 1, 343, 25, 1, 13, 1, 1, 55, 7, 19, 1, 1, 1, 61, 31, 7, 1, 13, 1, 67, 1, 1, 7, 1, 1, 73, 37, 25, 19, 7, 13, 79, 1, 1, 1, 1, 7, 85, 43, 1, 1, 1, 1, 8281
Offset: 1

Views

Author

R. J. Mathar, Jun 27 2008

Keywords

Crossrefs

Programs

  • Maple
    A140213 := proc(n)
        a := 1;
        for d in numtheory[divisors](n) do
            if modp(d,6) = 1 then
                a := a*d ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, Dec 15 2015
  • PARI
    A140213(n) = { my(m=1); fordiv(n, d, if(1==(d%6), m *= d)); (m); }; \\ Antti Karttunen, Jul 09 2017

Extensions

More terms from D. S. McNeil, Mar 24 2009

A359309 Number of divisors of 6*n-5 of form 6*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 2, 3, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-5, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-5, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-5).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-5)).

A359306 Number of divisors of 6*n-2 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-2, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-2))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(4*k-3)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-2)).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(6*k-5)).

A359307 Number of divisors of 6*n-3 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 4, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 1, 4, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-3, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-3).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-3)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(6*k-5)).

A359308 Number of divisors of 6*n-4 of form 6*k+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 2, 4, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-4, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-4, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-4))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-4).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-4)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(6*k-5)).

A304978 Numbers that can be expressed in more than one way as 6xy + x + y with x >= y > 0.

Original entry on oeis.org

106, 155, 197, 204, 253, 288, 302, 351, 379, 400, 421, 449, 470, 498, 504, 535, 547, 554, 561, 596, 645, 652, 687, 694, 704, 729, 743, 779, 782, 792, 820, 834, 841, 873, 890, 904, 925, 939, 953, 988, 1016, 1029, 1037, 1042, 1054, 1079, 1086, 1107, 1121, 1135, 1184, 1198, 1204, 1211, 1219, 1233, 1254, 1276, 1282, 1289, 1329
Offset: 1

Views

Author

Pedro Caceres, May 22 2018

Keywords

Comments

Is it possible to find a closed form formula for this sequence?
Numbers k such that 6*k+1 has at least 5 divisors == 1 (mod 6). - Robert Israel, Jan 20 2019

Examples

			106 is in this sequence because 106 can be expressed in two different ways as 6xy + x + y: 6*8*2 + 8 + 2 and 6*15*1 + 15 + 1.
		

Crossrefs

Subsequence of A067611. A279060.

Programs

  • Maple
    filter:= proc(n) nops(select(t -> t mod 6 =1, numtheory:-divisors(6*n+1)))>= 5 end proc:
    select(filter, [$1..2000]); # Robert Israel, Jan 20 2019
  • Mathematica
    Select[Range[1329], 2 == Length@ FindInstance[ 6*x*y+x+y == # && x >= y > 0, {x, y}, Integers, 2] &] (* Giovanni Resta, May 29 2018 *)
  • PARI
    is(n) = my(i=0); for(x=1, n, for(y=1, x, if(n==6*x*y+x+y, i++; if(i==2, return(1))))); 0 \\ Felix Fröhlich, May 29 2018
  • Python
    from sympy import divisors
    def ok(n): return sum(d%6 == 1 for d in divisors(6*n+1)) > 4
    print([n for n in range(1330) if ok(n)]) # David Radcliffe, Jun 19 2025
    
Showing 1-10 of 11 results. Next