cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A279060 Number of divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möbius transform is the period-6 sequence {1, 0, 0, 0, 0, 0, ...}.

Examples

			a(14) = 2 because 14 has 4 divisors {1,2,7,14} among which 2 divisors {1,7} are of the form 6*k + 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(6 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(6 k + 1)/(1 - x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(Mod[#,6]==1&)],{n,0,120}] (* _Harvey P. Dale, Apr 27 2018 *)
  • PARI
    A279060(n) = if(!n,n,sumdiv(n, d, (1==(d%6)))); \\ Antti Karttunen, Jul 09 2017
    
  • Python
    from sympy import divisors
    def A279060(n): return sum(d%6 == 1 for d in divisors(n)) # David Radcliffe, Jun 19 2025

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(6*k)).
G.f.: Sum_{k>=0} x^(6*k+1)/(1 - x^(6*k+1)).
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A320001(n) + [1 == n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A035218(n) - A319995(n). (End)
a(n) = (A035218(n) + A035178(n)) / 2. - David Radcliffe, Jun 19 2025
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (1 - gamma)/6 = 0.686263..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A363807 Number of divisors of n of the form 7*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 2, 0, 0, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 7] == 5 &]; Array[a, 100] (* Amiram Eldar, Jun 23 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d%7==5);

Formula

G.f.: Sum_{k>0} x^(5*k)/(1 - x^(7*k)).
G.f.: Sum_{k>0} x^(7*k-2)/(1 - x^(7*k-2)).
Sum_{k=1..n} a(k) = n*log(n)/7 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,7) - (1 - gamma)/7 = -0.169787..., gamma(5,7) = -(psi(5/7) + log(7))/7 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A035218 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 36.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 3, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 2, 2, 4, 1, 2, 3, 2, 3, 2, 2, 2, 2, 4
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of factors (over Q) of the polynomial x^(2n) - x^n + 1. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
This sequence is multiplicative. Just as (A001227)(n) is the number of ways to write n as differences of 3-gonal numbers, this sequence is the number of ways to write n as difference of (-1)-gonal numbers. If p_e(n):=1/2*n*((e-2)*n+(4-e)) is the n-th e-gonal number, then 2*a(n) = |{(m,k) of Z X Z; pe(-1)(m+k)-pe(m-1)=n}| for e=-1. - Volker Schmitt (clamsi(AT)gmx.net), Oct 11 2004
a(n) is the number of divisors of n not divisible by 2 or 3. For example, a(36)=1 because 1 is the only such divisor of 36. a(10) = 2 because we count the divisors 1 and 5. - Geoffrey Critzer, Feb 15 2015

Crossrefs

Programs

  • Maple
    res:=1; ifac:=op(ifactors(i))[2]; for pfac in ifac do; if pfac[1]>3 then res:=res*(pfac[2]+1); a(n):=res;
  • Mathematica
    nn = 81; f[list_, i] := list[[i]]; a = Prepend[Drop[Table[Boole[Min[FactorInteger[n][[All, 1]]] > 3], {n, 1, nn}], 1], 1]; b = Table[1, {nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 15 2015 *)
    f[p_, e_] := If[p >= 5, e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    m=36; direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, (d % 2) && (d % 3)); \\ Michel Marcus, Feb 16 2015

Formula

a(n) = d(6n) - d(3n) - d(2n) + d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 30 2003
Multiplicative with a(2^e)=1, a(3^e)=1, a(p^e)=e+1 if p>3. Inverse Möbius transform is periodic with 1, 0, 0, 0, 1, 0. - Volker Schmitt (clamsi(AT)gmx.net), Oct 11 2004
Dirichlet g.f.: zeta(s)^2*(1 - 1/2^s)*(1 - 1/3^s). - Geoffrey Critzer, Feb 15 2015
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A279060(n) + A319995(n).
a(n) = A320015(n) + ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
(End)
Sum_{k=1..n} a(k) ~ n*(log(n) + 2*gamma + log(12)/2 - 1)/3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 29 2019

Extensions

More terms from Antti Karttunen, Oct 03 2018

A359305 Number of divisors of 6*n-1 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Comments

Also number of divisors of 6*n-1 of form 6*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 6*n - 1]/2; Array[a, 100] (* Amiram Eldar, Dec 26 2022 *)
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==1);
    
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(5*k-4)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-1) = A319995(6*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(6*k-5)).
From Amiram Eldar, Dec 26 2022: (Start)
a(n) = A000005(A016969(n-1))/2.
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 3*log(2) + 2*log(3))*n/6 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). (End)

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A359327 Number of divisors of 6*n-5 of form 6*k+5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 2, 0, 1, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-5, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(6*n-5, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/(1-x^(6*k-1)))))

Formula

a(n) = A319995(6*n-5).
G.f.: Sum_{k>0} x^(5*k)/(1 - x^(6*k-1)).

A359324 Number of divisors of 6*n-2 of form 6*k+5.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 2, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 2, 0, 2, 1, 1, 2, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 2, 1, 1, 1, 1, 3, 0, 1, 0, 1, 2, 1, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(6*n-2, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^(6*k-1)))))
    
  • PARI
    my(N=100, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(5*k-3)/(1-x^(6*k-4)))))

Formula

a(n) = A319995(6*n-2).
G.f.: Sum_{k>0} x^(2*k)/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-3)/(1 - x^(6*k-4)).

A359325 Number of divisors of 6*n-3 of form 6*k+5.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 1, 0, 0, 1, 2, 0, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 2, 1, 0, 0, 1, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-3, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^(6*k-1)))))
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(5*k-2)/(1-x^(6*k-3)))))

Formula

a(n) = A319995(6*n-3).
G.f.: Sum_{k>0} x^(3*k)/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-2)/(1 - x^(6*k-3)).

A359326 Number of divisors of 6*n-4 of form 6*k+5.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 2, 0, 0, 0, 2, 2, 0, 0, 1, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-4, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(6*n-4, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^(6*k-1)))))
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(5*k-1)/(1-x^(6*k-2)))))

Formula

a(n) = A319995(6*n-4).
G.f.: Sum_{k>0} x^(4*k)/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-1)/(1 - x^(6*k-2)).

A364048 Expansion of Sum_{k>0} x^(5*k) / (1 + x^(6*k)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, -1, 0, 1, 0, 0, 0, 1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, 1, -1, -1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 2, -1, 0, 1, -1, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, -1, 0, 2, 0, 1, -1, 1, 1, 0, -1, 0, -1, 0, 0, 0, 0, -1, 1, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Cf. A319995.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^((#-5)/6) &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%6==5)*(-1)^((d-5)/6));

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(6*k-1) / (1 - x^(6*k-1)).
a(n) = Sum_{d|n, d==5 (mod 6)} (-1)^((d-5)/6).
Showing 1-10 of 10 results.