cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A319995 Number of divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A001620, A016629, A222458 (psi(5/6)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A319995(n) = if(!n,n,sumdiv(n, d, (5==(d%6))));

Formula

a(n) = A035218(n) - A279060(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (1 - gamma)/6 = -0.220635..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A319992 a(n) = Product_{d|n, dA019565(d)^[2 == d mod 3].

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 1, 30, 1, 3, 1, 3, 10, 21, 1, 3, 1, 30, 1, 126, 1, 21, 10, 3, 1, 315, 1, 30, 1, 21, 42, 66, 10, 3, 1, 3, 1, 11550, 1, 315, 1, 126, 10, 990, 1, 21, 1, 30, 22, 693, 1, 3, 420, 2205, 1, 2310, 1, 1650, 1, 3, 1, 273, 10, 126, 1, 66, 330, 245700, 1, 21, 1, 3, 10, 585, 42, 693, 1, 11550, 1, 546, 1, 315, 220, 3, 770
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. also A293222.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[2 == d mod 3].
a(n) = A293214(n) / (A319990(n)*A319991(n)).
For all n >= 1:
A007814(a(n)) = A320005(n).
A048675(a(n)) = A293898(n).
A195017(a(n)) = -A293896(n) mod 3.

A320001 Number of proper divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320001(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320012 Filter sequence combined from those proper divisors d of n for which 2 == d (mod 3); Restricted growth sequence transform of A319992.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 4, 5, 1, 2, 1, 3, 1, 6, 1, 5, 4, 2, 1, 7, 1, 3, 1, 5, 8, 9, 4, 2, 1, 2, 1, 10, 1, 7, 1, 6, 4, 11, 1, 5, 1, 3, 12, 13, 1, 2, 14, 15, 1, 16, 1, 17, 1, 2, 1, 18, 4, 6, 1, 9, 19, 20, 1, 5, 1, 2, 4, 21, 8, 13, 1, 10, 1, 22, 1, 7, 23, 2, 24, 25, 1, 3, 1, 11, 1, 26, 4, 18, 1, 7, 8, 27, 1, 9, 1, 28, 29
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320005(i) = A320005(j),
a(i) = a(j) => A293898(i) = A293898(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319992(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320012 = rgs_transform(vector(up_to,n,A319992(n)));
    A320012(n) = v320012[n];

A320003 Number of proper divisors of n of the form 6*k + 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Number of divisors of n that are odd multiples of 3 and less than n.

Examples

			For n = 18, of its five proper divisors [1, 2, 3, 6, 9] only 3 and 9 are odd multiples of three, thus a(18) = 2.
For n = 108, the odd part is 27 for which 27/3 has 3 divisors. As 108 is even, we don't subtract 1 from that 3 to get a(108) = 3. - _David A. Corneth_, Oct 03 2018
		

Crossrefs

Cf. A001620, A016629, A020759 (psi(1/2)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320003(n) = if(!n,n,sumdiv(n, d, (d
    				
  • PARI
    a(n) = if(n%3==0, my(v=valuation(n, 2)); n>>=v; numdiv(n/3)-(!v), 0) \\ David A. Corneth, Oct 03 2018

Formula

a(n) = Sum_{d|n, dA000035(d))*A079978(d).
a(n) = A007814(A319990(n)).
a(4*n) = a(2*n). - David A. Corneth, Oct 03 2018
G.f.: Sum_{k>=1} x^(12*k-6) / (1 - x^(6*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,6) - (2 - gamma)/6 = -0.208505..., gamma(3,6) = -(psi(1/2) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320015 Number of proper divisors of n that are either of the form 6*k+1 or 6*k + 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 4, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 1, 1, 3, 2, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && MemberQ[{1, 5}, Mod[#, 6]] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320015(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A320001(n) + A320005(n).
a(n) = A035218(n) - ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = 2*(gamma + log(12)/4 - 1)/3 = 0.132294..., and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Showing 1-6 of 6 results.