cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A320001 Number of proper divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320001(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A279060(n) - [+1 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320005(n).
a(n) = A007814(A319991(n)).
G.f.: Sum_{k>=1} x^(12*k-10) / (1 - x^(6*k-5)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (2 - gamma)/6 = 0.519597..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A319990 a(n) = Product_{d|n, dA019565(d)^[0 == d mod 3].

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 6, 1, 1, 90, 1, 1, 6, 1, 1, 1260, 1, 1, 6, 1, 1, 3150, 1, 1, 84, 1, 1, 18900, 1, 1, 6, 1, 1, 1455300, 1, 1, 6, 1, 1, 9900, 1, 1, 17640, 1, 1, 242550, 1, 1, 6, 1, 1, 19209960, 1, 1, 6, 1, 1, 764032500, 1, 1, 9240, 1, 1, 2340, 1, 1, 6, 1, 1, 7283776500, 1, 1, 1260, 1, 1, 35100, 1, 1, 38808, 1, 1, 94594500, 1, 1, 6, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A293214, A319991, A319992, A320003, A320010 (rgs-transform).

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[0 == d mod 3].
a(n) = A293214(n) / (A319991(n)*A319992(n)).
For all n >= 1:
A007814(a(n)) = A320003(n).
A195017(a(n)) = 0 mod 3.

A320010 Filter sequence combined from those proper divisors of n that are multiples of 3; Restricted growth sequence transform of A319990.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 5, 1, 1, 6, 1, 1, 7, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 9, 1, 1, 10, 1, 1, 11, 1, 1, 2, 1, 1, 12, 1, 1, 2, 1, 1, 13, 1, 1, 14, 1, 1, 15, 1, 1, 2, 1, 1, 16, 1, 1, 4, 1, 1, 17, 1, 1, 18, 1, 1, 19, 1, 1, 2, 1, 1, 20, 1, 1, 2, 1, 1, 21, 1, 1, 22, 1, 1, 23, 1, 1, 24
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A320003(i) = A320003(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319990(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320010 = rgs_transform(vector(up_to,n,A319990(n)));
    A320010(n) = v320010[n];
Showing 1-4 of 4 results.