cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279060 Number of divisors of n of the form 6*k + 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2016

Keywords

Comments

Möbius transform is the period-6 sequence {1, 0, 0, 0, 0, 0, ...}.

Examples

			a(14) = 2 because 14 has 4 divisors {1,2,7,14} among which 2 divisors {1,7} are of the form 6*k + 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Sum[x^k/(1 - x^(6 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 120; CoefficientList[Series[Sum[x^(6 k + 1)/(1 - x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    Table[Count[Divisors[n],?(Mod[#,6]==1&)],{n,0,120}] (* _Harvey P. Dale, Apr 27 2018 *)
  • PARI
    A279060(n) = if(!n,n,sumdiv(n, d, (1==(d%6)))); \\ Antti Karttunen, Jul 09 2017
    
  • Python
    from sympy import divisors
    def A279060(n): return sum(d%6 == 1 for d in divisors(n)) # David Radcliffe, Jun 19 2025

Formula

G.f.: Sum_{k>=1} x^k/(1 - x^(6*k)).
G.f.: Sum_{k>=0} x^(6*k+1)/(1 - x^(6*k+1)).
From Antti Karttunen, Oct 03 2018: (Start)
a(n) = A320001(n) + [1 == n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = 1 mod 6, and 0 otherwise.
a(n) = A035218(n) - A319995(n). (End)
a(n) = (A035218(n) + A035178(n)) / 2. - David Radcliffe, Jun 19 2025
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,6) - (1 - gamma)/6 = 0.686263..., gamma(1,6) = -(psi(1/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A319991 a(n) = Product_{d|n, dA019565(d)^[1 == d mod 3].

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 10, 2, 2, 2, 10, 2, 60, 2, 10, 2, 2, 2, 210, 60, 2, 2, 10, 2, 140, 2, 300, 2, 42, 2, 110, 2, 2, 60, 10, 2, 132, 140, 210, 2, 60, 2, 1650, 2, 2, 2, 110, 60, 6468, 2, 700, 2, 2, 2, 115500, 132, 2, 2, 210, 2, 4620, 60, 110, 140, 330, 2, 390, 2, 1260, 2, 10, 2, 260, 308, 660, 60, 140, 2, 210210, 2, 2, 2, 115500, 2, 1092, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. also A293221.

Programs

  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };

Formula

a(n) = Product_{d|n, dA019565(d)^[1 == d mod 3].
a(n) = A293214(n) / (A319990(n)*A319992(n)).
For all n >= 1:
A007814(a(n)) = A320001(n).
A048675(a(n)) = A293897(n).
A195017(a(n)) = A293895(n) mod 3.

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320011 Filter sequence combined from those proper divisors d of n for which +1 == d (mod 3); Restricted growth sequence transform of A319991.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 2, 5, 4, 2, 2, 3, 2, 6, 2, 7, 2, 8, 2, 9, 2, 2, 4, 3, 2, 10, 6, 5, 2, 4, 2, 11, 2, 2, 2, 9, 4, 12, 2, 13, 2, 2, 2, 14, 10, 2, 2, 5, 2, 15, 4, 9, 6, 16, 2, 17, 2, 18, 2, 3, 2, 19, 20, 21, 4, 6, 2, 22, 2, 2, 2, 14, 2, 23, 2, 11, 2, 8, 24, 25, 15, 2, 10, 9, 2, 26, 2, 27, 2, 28, 2, 29, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A320001(i) = A320001(j),
a(i) = a(j) => A293897(i) = A293897(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A319991(n) = { my(m=1); fordiv(n,d,if((dA019565(d))); m; };
    v320011 = rgs_transform(vector(up_to,n,A319991(n)));
    A320011(n) = v320011[n];

A320003 Number of proper divisors of n of the form 6*k + 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Comments

Number of divisors of n that are odd multiples of 3 and less than n.

Examples

			For n = 18, of its five proper divisors [1, 2, 3, 6, 9] only 3 and 9 are odd multiples of three, thus a(18) = 2.
For n = 108, the odd part is 27 for which 27/3 has 3 divisors. As 108 is even, we don't subtract 1 from that 3 to get a(108) = 3. - _David A. Corneth_, Oct 03 2018
		

Crossrefs

Cf. A001620, A016629, A020759 (psi(1/2)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320003(n) = if(!n,n,sumdiv(n, d, (d
    				
  • PARI
    a(n) = if(n%3==0, my(v=valuation(n, 2)); n>>=v; numdiv(n/3)-(!v), 0) \\ David A. Corneth, Oct 03 2018

Formula

a(n) = Sum_{d|n, dA000035(d))*A079978(d).
a(n) = A007814(A319990(n)).
a(4*n) = a(2*n). - David A. Corneth, Oct 03 2018
G.f.: Sum_{k>=1} x^(12*k-6) / (1 - x^(6*k-3)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(3,6) - (2 - gamma)/6 = -0.208505..., gamma(3,6) = -(psi(1/2) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320015 Number of proper divisors of n that are either of the form 6*k+1 or 6*k + 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 3, 2, 2, 2, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 4, 1, 1, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 2, 2, 2, 3, 1, 1, 3, 2, 3, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && MemberQ[{1, 5}, Mod[#, 6]] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320015(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A320001(n) + A320005(n).
a(n) = A035218(n) - ch15(n), where ch15 is the characteristic function of numbers of the form +-1 mod 6, i.e., ch15(n) = A232991(n-1).
Sum_{k=1..n} a(k) = n*log(n)/3 + c*n + O(n^(1/3)*log(n)), where c = 2*(gamma + log(12)/4 - 1)/3 = 0.132294..., and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023
Showing 1-6 of 6 results.