cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A359305 Number of divisors of 6*n-1 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 1, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Comments

Also number of divisors of 6*n-1 of form 6*k+5.

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 6*n - 1]/2; Array[a, 100] (* Amiram Eldar, Dec 26 2022 *)
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==1);
    
  • PARI
    a(n) = sumdiv(6*n-1, d, d%6==5);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-1))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(5*k-4)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-1) = A319995(6*n-1).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-1)).
G.f.: Sum_{k>0} x^(5*k-4)/(1 - x^(6*k-5)).
From Amiram Eldar, Dec 26 2022: (Start)
a(n) = A000005(A016969(n-1))/2.
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 3*log(2) + 2*log(3))*n/6 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). (End)

A359306 Number of divisors of 6*n-2 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 2, 1, 4, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-2, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-2, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-2))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(4*k-3)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-2).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-2)).
G.f.: Sum_{k>0} x^(4*k-3)/(1 - x^(6*k-5)).

A359307 Number of divisors of 6*n-3 of form 6*k+1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 4, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 3, 2, 1, 4, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-3, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-3, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-3))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(3*k-2)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-3).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-3)).
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(6*k-5)).

A359308 Number of divisors of 6*n-4 of form 6*k+1.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 4, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 3, 2, 4, 1, 2, 1, 2, 2, 2, 3, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 2, 1, 2, 2, 2, 2, 4, 2, 2, 1, 4, 1, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Dec 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[6*n-4, 1 &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 16 2023 *)
  • PARI
    a(n) = sumdiv(6*n-4, d, d%6==1);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(6*k-4))))
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(6*k-5))))

Formula

a(n) = A279060(6*n-4).
G.f.: Sum_{k>0} x^k/(1 - x^(6*k-4)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(6*k-5)).

A363853 Number of divisors of 7*n-6 of form 7*k+1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[7*n - 6, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
  • PARI
    a(n) = sumdiv(7*n-6, d, d%7==1);

Formula

a(n) = A279061(7*n-6).
G.f.: Sum_{k>0} x^k/(1 - x^(7*k-6)).
Showing 1-5 of 5 results.