cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A319995 Number of divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 1, 1, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Cf. A001620, A016629, A222458 (psi(5/6)).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A319995(n) = if(!n,n,sumdiv(n, d, (5==(d%6))));

Formula

a(n) = A035218(n) - A279060(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Sep 11 2019
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (1 - gamma)/6 = -0.220635..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A320005 Number of proper divisors of n of the form 6*k + 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 03 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 6] == 5 &]; Array[a, 100] (* Amiram Eldar, Nov 25 2023 *)
  • PARI
    A320005(n) = if(!n,n,sumdiv(n, d, (d
    				

Formula

a(n) = A319995(n) - [+5 = n (mod 6)], where [ ] is the Iverson bracket, giving 1 only when n = -1 mod 6, and 0 otherwise.
a(n) = A320015(n) - A320001(n).
a(n) = A007814(A319992(n)).
G.f.: Sum_{k>=1} x^(12*k-2) / (1 - x^(6*k-1)). - Ilya Gutkovskiy, Apr 14 2021
Sum_{k=1..n} a(k) = n*log(n)/6 + c*n + O(n^(1/3)*log(n)), where c = gamma(5,6) - (2 - gamma)/6 = -0.387302..., gamma(5,6) = -(psi(5/6) + log(6))/6 is a generalized Euler constant, and gamma is Euler's constant (A001620) (Smith and Subbarao, 1981). - Amiram Eldar, Nov 25 2023

A222457 Decimal expansion of the negated value of the digamma function at 1/6.

Original entry on oeis.org

6, 3, 3, 2, 1, 2, 7, 5, 0, 5, 3, 7, 4, 9, 1, 4, 7, 9, 2, 4, 2, 4, 9, 6, 1, 5, 7, 4, 8, 4, 5, 7, 7, 7, 7, 2, 2, 5, 9, 0, 4, 9, 4, 8, 1, 3, 5, 3, 3, 6, 6, 9, 1, 4, 8, 0, 0, 3, 9, 9, 6, 1, 5, 7, 4, 1, 0, 0, 8, 1, 1, 8, 2, 2, 3, 4, 4, 9, 8, 3, 7, 7, 9, 8, 5, 2, 8
Offset: 1

Views

Author

Bruno Berselli, Feb 21 2013

Keywords

Examples

			Psi(1/6) = -6.3321275053749147924249615748457777225904948...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-PolyGamma[1/6], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(-psi[0](1/6)));
  • PARI
    -psi(1/6)
    

Formula

Psi(1/6) = -gamma -Pi*sqrt(3)/2 -3*log(3)/2 -2*log(2).

A250129 Decimal expansion of the negated value of the digamma function at 1/8.

Original entry on oeis.org

8, 3, 8, 8, 4, 9, 2, 6, 6, 3, 2, 9, 5, 8, 5, 4, 8, 6, 7, 8, 0, 2, 7, 4, 2, 9, 2, 3, 0, 8, 6, 3, 4, 3, 0, 0, 0, 0, 5, 1, 4, 4, 6, 0, 4, 2, 4, 4, 9, 4, 7, 7, 1, 4, 3, 1, 1, 6, 0, 8, 6, 9, 2, 4, 6, 8, 2, 9, 0, 7, 8, 2, 3, 4, 4, 3, 3, 1, 3, 3, 4, 8, 8, 9, 7, 4, 1, 9, 3, 9, 7, 8, 0, 2, 1, 1, 5, 9, 0, 8, 4, 9, 4, 5, 8
Offset: 1

Views

Author

Jean-François Alcover, Jan 15 2015

Keywords

Examples

			Psi(1/8) = -8.388492663295854867802742923086343000051446...
		

Crossrefs

Programs

Formula

Psi(1/8) = -gamma - (1/2)*(1+sqrt(2))*Pi - sqrt(2)*arccoth(sqrt(2)) - 4*log(2).
Showing 1-4 of 4 results.