A222530 O.g.f.: Sum_{n>=1} (n^10)^n * exp(-n^10*x) * x^n / n!.
1, 1, 524287, 34314651811530, 50369882873307917364901, 740095864368253016271188139587625, 67872880319721869662486234870635119906757244, 28468832412072117193931250482560479429446507352468258480, 43812568949824405485262661429905291482204531455805230631187460302069
Offset: 0
Keywords
Examples
O.g.f.: A(x) = 1 + x + 524287*x^2 + 34314651811530*x^3 + 50369882873307917364901*x^4 +...+ Stirling2(10*n, n)*x^n +... where A(x) = 1 + 1^10*x*exp(-1^10*x) + 2^20*exp(-2^10*x)*x^2/2! + 3^30*exp(-3^10*x)*x^3/3! + 4^40*exp(-4^10*x)*x^4/4! + 5^50*exp(-5^10*x)*x^5/5! +... is a power series in x with integer coefficients.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..60
Programs
-
Mathematica
Table[StirlingS2[10*n, n],{n,0,20}] (* Vaclav Kotesovec, May 11 2014 *)
-
PARI
{a(n)=polcoeff(sum(k=0, n, (k^10)^k*exp(-k^10*x +x*O(x^n))*x^k/k!), n)}
-
PARI
{a(n)=1/n!*polcoeff(sum(k=0, n, (k^1)^k*x^k/(1+k^10*x +x*O(x^n))^(k+1)), n)}
-
PARI
{a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(9*n))), 9*n)}
-
PARI
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = Stirling2(10*n, n)} for(n=0, 12, print1(a(n), ", "))
Formula
a(n) = Stirling2(10*n, n).
a(n) = [x^(10*n)] (10*n)! * (exp(x) - 1)^n / n!.
a(n) = [x^(9*n)] 1 / Product_{k=1..n} (1-k*x).
a(n) = 1/n! * [x^n] Sum_{k>=0} (k^10)^k*x^k / (1 + k^10*x)^(k+1).
a(n) ~ n^(9*n) * 10^(10*n) / (sqrt(2*Pi*(1-c)*n) * exp(9*n) * (10-c)^(9*n) * c^n), where c = -LambertW(-10*exp(-10)). - Vaclav Kotesovec, May 11 2014
Comments