cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A222532 a(1)=2; for n >= 1, a(n+1) is the least prime p_m such that a(n)=p_m-p_{m-1}+...+(-1)^{m-k}p_k for some 0

Original entry on oeis.org

2, 5, 7, 13, 17, 23, 31, 37, 43, 53, 59, 67, 73, 83, 89, 101, 109, 113, 131, 149, 157, 163, 173, 179, 197, 223, 257, 263, 269, 277, 283, 311, 347, 389, 401, 421, 431, 487, 503, 523, 557, 569, 577, 601, 613, 641, 661, 709, 733, 739, 773, 823, 827, 857, 883, 929, 947, 953, 977, 983, 997, 1009, 1019, 1031, 1039, 1051, 1097, 1117, 1129, 1151, 1181, 1223, 1229, 1237, 1249, 1279, 1327, 1361, 1373, 1423, 1459, 1481, 1499, 1543, 1559, 1571, 1601, 1621, 1627, 1669, 1693, 1699, 1721, 1733, 1759, 1783, 1823, 1873, 1973, 2011
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 24 2013

Keywords

Comments

Conjecture: For any given prime p, if we define b(1)=p and let b(n+1) be the least prime p_m such that b(n)=p_m-p_{m-1}+...+(-1)^{m-k}p_k for some 0p adjacent if and only if q is the least prime p_m such that p=p_m-p_{m-1}+...+(-1)^{m-k}p_k for some 0
Clearly the graph T contains no cycle. The vertices on the unique path connecting 2 and 71 are listed (in order) below: 2, 5, 7, 13, 17, 23, 31, 37, 43, 53, 59, 67, 73, 83, 89, 101, 109, 113, 131, 149, 139, 107, 97, 79, 71.

Examples

			a(2)=5 and a(3)=7 since 2=5-3 and 5=7-5+3.
		

Crossrefs

Programs

  • Mathematica
    k=1
    n=1
    s[0_]:=0
    s[n_]:=s[n]=Prime[n]-s[n-1]
    Do[If[m==1,Print[n," ",2]];If[m==k,n=n+1;Do[If[s[j]-(-1)^(j-i)*s[i]==Prime[m],k=j;Print[n," ",Prime[j]];Goto[aa]],{j,m+1,PrimePi[3Prime[m]]},{i,0,j-2}]];
    Label[aa];Continue,{m,1,1000}]

A222603 a(1)=1; for n>0, a(n+1) is the least practical number q>a(n) such that 2(a(n)+1)-q is practical.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 24, 30, 32, 36, 42, 54, 56, 60, 66, 78, 80, 84, 90, 104, 120, 162, 176, 192, 210, 224, 234, 260, 270, 272, 276, 294, 320, 330, 342, 378, 380, 384, 390, 392, 396, 414, 416, 420, 450, 462, 464, 468, 476, 486, 510, 512, 522, 546, 594, 620, 630, 702, 704, 714, 726, 728, 744, 750, 798, 800, 810, 812, 816, 920, 924, 930, 966, 968, 972, 980, 990, 992, 1014, 1040, 1050, 1088, 1122, 1232, 1242, 1254, 1280, 1290, 1302, 1316, 1332, 1350, 1352, 1380, 1386, 1458, 1518, 1520
Offset: 1

Author

Zhi-Wei Sun, Feb 26 2013

Keywords

Comments

By a result of Melfi, each positive even number can be written as the sum of two practical numbers.
For a practical number p, define h(p) as the least practical number q>p such that 2(p+1)-q is practical. Construct a simple (undirected) graph H as follows: The vertex set of H is the set of all practical numbers, and for two vertices p and q>p there is an edge connecting p and q if and only if h(p)=q. Clearly H contains no cycle.
Conjecture: The graph H constructed above is connected and hence it is a tree.

Examples

			a(4)=6 since 2(a(3)+1)=10=6+4 with 4 and 6 both practical, and 6>a(3)=4.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    k=1
    n=1
    Do[If[m==1,Print[n," ",1]];If[m==k,n=n+1;Do[If[pr[2j]==True&&pr[2m+2-2j]==True,k=2j;Print[n," ",2j];Goto[aa]],{j,Ceiling[(m+1)/2],m}]];
    Label[aa];Continue,{m,1,1000}]

A198472 a(n)=q(n) if 4 | q(n)-2, and a(n)=q(n)/2 if 4 | q(n), where q(n) is the least practical number q>n with 2(n+1)-q practical.

Original entry on oeis.org

2, 2, 2, 6, 6, 4, 4, 6, 6, 8, 6, 18, 8, 18, 8, 18, 18, 10, 10, 12, 12, 14, 12, 30, 14, 30, 14, 30, 30, 16, 16, 18, 18, 20, 18, 42, 20, 42, 20, 42, 42, 54, 24, 24, 28, 54, 24, 28, 30, 54, 28, 32, 54, 28, 28, 30, 30, 32, 30, 66, 32, 66, 32, 66, 66, 78, 36, 36, 40, 78, 36, 40, 42, 78, 40, 44, 78, 40, 40, 42, 42, 44, 42, 90, 44, 90, 44, 90, 90, 52, 48, 48, 50, 50, 48, 52, 50, 54, 50, 56
Offset: 1

Author

Zhi-Wei Sun, Feb 27 2013

Keywords

Comments

Conjecture: If b(1)>=4 is an integer and b(k+1)=a(b(k)) for k=1,2,3,..., then b(n)=4 for some n>0.
This conjecture has the same flavor as the Collatz conjecture.

Examples

			a(20)=12 since 2(20+1)=24+18 with 24 and 18 both practical.
		

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    Do[Do[If[pr[2k]==True&&pr[2n+2-2k]==True,Print[n," ",2k/(1+Mod[k-1,2])];Goto[aa]],{k,Ceiling[(n+1)/2],n}];
    Label[aa];Continue,{n,1,100}]
  • PARI
    A198472(n) = forstep(q=n+++bittest(n,0),9e9,2, is_A005153(q) && is_A005153(2*n-q) && return(if(q%4,q,q\2))) \\ M. F. Hasler, Feb 27 2013

A213187 a(n) = (p+1)/2 if 4 | p+1, and p otherwise, where p is the least prime > n with 2(n+1)-p prime.

Original entry on oeis.org

2, 2, 5, 5, 4, 4, 6, 6, 13, 6, 13, 13, 17, 17, 10, 17, 10, 10, 12, 12, 16, 12, 29, 16, 29, 16, 37, 29, 16, 16, 41, 37, 37, 41, 41, 37, 24, 41, 22, 41, 22, 22, 24, 24, 61, 24, 53, 61, 53, 30, 61, 53, 61, 34, 30, 61, 73, 30, 61, 61, 36, 34, 34, 36, 36, 34, 42, 36, 73, 36, 73, 73, 89, 40, 40, 42, 42, 40, 89, 42, 97, 42, 89, 97, 89, 101, 97, 89, 97, 52, 101, 97, 109, 101, 52, 97, 54, 101, 52, 101
Offset: 1

Author

Zhi-Wei Sun, Feb 28 2013

Keywords

Comments

Conjecture: If b(1)>2 is an integer, and b(k+1)=a(b(k)) for k=1,2,3,..., then b(n)=4 for some n>0.
For example, if we start from b(1)=45 then we get the sequence 45, 61, 36, 37, 24, 16, 17, 10, 6, 4, 5, 4, ...

Examples

			a(8)=6 since 2(8+1)=11+5 with (11+1)/2=6;
a(9)=13 since 2(9+1)=13+7.
		

Crossrefs

Programs

  • Mathematica
    Do[Do[If[PrimeQ[2n+2-Prime[k]]==True,Print[n," ",If[Mod[Prime[k],4]==3,(Prime[k]+1)/2,Prime[k]]];Goto[aa]],{k,PrimePi[n]+1,PrimePi[2n]}];
    Label[aa];Continue,{n,1,100}]
    nxt[{n_,a_}]:=Module[{p=NextPrime[n]},While[!PrimeQ[2(n+1)-p],p = NextPrime[ p]];{n+1,If[Divisible[p+1,4],(p+1)/2,p]}]; Rest[ Transpose[ NestList[ nxt,{1,2},110]][[2]]] (* Harvey P. Dale, May 30 2016 *)
  • PARI
    a(n)=my(q=nextprime(n+1)); while(!isprime(2*n+2-q),q=nextprime(q+1)); if(q%4<3,q,(q+1)/2) \\ Charles R Greathouse IV, Feb 28 2013
Showing 1-4 of 4 results.