A222591 Numerators of (n*(n - 3)/6) + 1, arising as the maximum possible number of triple lines for an n-element set.
1, 5, 8, 4, 17, 23, 10, 38, 47, 19, 68, 80, 31, 107, 122, 46, 155, 173, 64, 212, 233, 85, 278, 302, 109, 353, 380, 136, 437, 467, 166, 530, 563, 199, 632, 668, 235, 743, 782, 274, 863, 905, 316, 992, 1037, 361, 1130, 1178, 409, 1277, 1328
Offset: 3
Examples
a(10) = 38 because (10*(10 - 3)/6) + 1 = 38/3.
Links
- György Elekes, Endre Szabó, On Triple Lines and Cubic Curves --- the Orchard Problem revisited, arXiv:1302.5777 [math.CO], Feb 23, 2013.
- Index entries for linear recurrences with constant coefficients, signature (0,0,3,0,0,-3,0,0,1).
Crossrefs
Cf. A169609.
Programs
-
Mathematica
Numerator[Table[(n(n-3))/6+1,{n,3,60}]] (* or *) LinearRecurrence[{0,0,3,0,0,-3,0,0,1},{1,5,8,4,17,23,10,38,47},60] (* Harvey P. Dale, Feb 11 2015 *)
Comments