A222713 Least number k such that n divides gcd(sigma(k), phi(k)) (A009223).
1, 3, 14, 12, 88, 14, 116, 15, 190, 88, 989, 35, 477, 116, 209, 105, 6901, 190, 7067, 88, 196, 989, 6439, 35, 15049, 477, 2754, 172, 10207, 209, 4976, 336, 989, 6901, 1189, 190, 10877, 7067, 477, 248, 13529, 377, 44461, 989, 418, 6439, 79523, 105, 10244, 15049
Offset: 1
Keywords
Examples
Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ... 1 first divides A009223(1); 2 first divides A009223(3); 3 first divides A009223(14)=6.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (terms 1-388 from Marius A. Burtea, 389-2808 from David A. Corneth)
Programs
-
Magma
[Min([n: n in [1..300000] | IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) ]): m in [1..70]]; // Marius A. Burtea, Mar 28 2019
-
Magma
v:=[]; for n in [1..60] do m:=1; while not EulerPhi(m) mod n eq 0 or not SumOfDivisors(m) mod n eq 0 do v[n]:=0; m:=m+1; end while; v[n]:=m; end for; v; // Marius A. Burtea, Mar 30 2019
-
Mathematica
Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i], #] != 0, i++]; i] &, 50] (* Michael De Vlieger, Mar 28 2019 *)
-
PARI
a(n)={my(k=1); while(gcd(sigma(k), eulerphi(k))%n!=0, k++); k}
Comments