cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222714 Smallest i such that prime(n) divides gcd(sigma(i), phi(i)) (cf. A009223).

Original entry on oeis.org

3, 14, 88, 116, 989, 477, 6901, 7067, 6439, 10207, 4976, 10877, 13529, 44461, 79523, 22577, 250277, 62023, 107869, 161027, 75008, 49769, 55277, 183296, 75077, 612463, 381923, 412163, 712423, 153679, 32576, 137549, 450181, 154289, 1776377, 1642577, 491723, 637981, 3903791, 239777, 642251, 1572889, 1608983, 1192739, 2791489, 316409, 888731, 4773091, 4942243, 1256293
Offset: 1

Views

Author

Phil Carmody, Mar 01 2013

Keywords

Examples

			Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ...
prime(1)=2 first divides A009223(3); prime(2)=3 first divides A009223(14)=6; prime(3)=5 first divides both sigma(88)=180 and phi(88)=40, so A222714(3)=88.
		

Crossrefs

Cf. A009223. Subsequence of A222713.

Programs

  • PARI
    A009223_hunt(x)=local(n=0,g);while(n++,g=A009223(n);if(g%x,,return(n)));
    for(x=1,50,print1(A009223_hunt(prime(x))", "))

A307640 Least number k such that n divides gcd(sigma(k), phi(k), tau(k)).

Original entry on oeis.org

1, 3, 18, 15, 3344, 45, 24128, 30, 882, 3344, 1012736, 126, 1953792, 24128, 16200, 168, 452263936, 2016, 1852571648, 3344, 40768, 1012736, 27007123456, 420, 1490000, 1953792, 103968, 24128, 2739920699392, 30096, 8348342681600, 840, 9114624, 452263936, 6163776, 2016
Offset: 1

Views

Author

Marius A. Burtea, Apr 19 2019

Keywords

Comments

For each n >= 1 there are infinitely many numbers s such that n divides sigma(s), phi(s) and tau(s).
From Dirichlet's theorem there are infinitely many numbers m for which the numbers p = n*m + 1 are prime. Then sigma(p^(n-1)), phi(p^(n-1)) and tau(p^(n-1)) numbers are divisible by n.

Examples

			For n = 2, sigma(3) = 4, phi(3) = 2, tau(3) = 4 are divisible by 2.
For n = 5, sigma(3344) = 7440, phi (3344) = 1440, tau (3344) = 20 are divisible by 5 and by 10.
For n = 11, sigma(1012736) = 2161632 = 11 * 196512, phi(1012736) = 11 * 43008, tau(1012736) = 11 * 4 are divisible by 11.
		

References

  • Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory. Ideas and methods of solving, Ed. Gil, Zalău, 2006, ch. 13, p. 79, pr. 18. (in Romanian).

Crossrefs

Programs

  • Magma
    for m in [1..16] do
          for n in [1..2000000] do
                  if IsIntegral(SumOfDivisors(n)/m) and IsIntegral(EulerPhi(n)/m) and IsIntegral(NumberOfDivisors(n)/m) then
                 m,n;
                 break;
                end if;
          end for;
    end for;
    
  • Mathematica
    Array[Block[{i = 1}, While[Mod[GCD[DivisorSigma[1, i], EulerPhi@ i,DivisorSigma[0, i]], #] != 0, i++]; i] &, 16] (*Adaptation after A222713*)
  • PARI
    isok(n,k) = ! frac(gcd(sigma(k), gcd(eulerphi(k), numdiv(k)))/n);
    a(n) = my(k=1); while(!isok(n,k), k++); k; \\ Michel Marcus, Apr 20 2019
    
  • PARI
    a(n) = {if(n==1,return(1)); my(res = oo, f = factor(n), hpf = f[#f~, 1]); forprime(p = 2, oo, if(p ^ (hpf - 1) > res, return(res)); forstep(i = p ^ (hpf - 1), res, p ^ (hpf - 1), if(isok(n, i), res = min(res, i);  next(2) ) ) ) } \\ uses isok from above \\ David A. Corneth, Apr 22 2019

Extensions

More terms from David A. Corneth, Apr 21 2019
Showing 1-2 of 2 results.