cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222716 Numbers which are both the sum of n+1 consecutive triangular numbers and the sum of the n-1 immediately following triangular numbers.

Original entry on oeis.org

0, 10, 100, 460, 1460, 3710, 8120, 15960, 28920, 49170, 79420, 122980, 183820, 266630, 376880, 520880, 705840, 939930, 1232340, 1593340, 2034340, 2567950, 3208040, 3969800, 4869800, 5926050, 7158060, 8586900, 10235260, 12127510, 14289760, 16749920, 19537760, 22684970, 26225220, 30194220, 34629780, 39571870, 45062680, 51146680
Offset: 1

Views

Author

Jonathan Sondow, Mar 02 2013

Keywords

Comments

The n+1 consecutive triangular numbers start with the A028387(n-2)-th triangular number A000217(n^2-n-1), while the n-1 consecutive triangular numbers start with the A000290(n)-th triangular number A000217(n^2).
Similar sums of consecutive integers are A059270.
Similar sums of consecutive squares are A059255.
Berselli points out that a(n) = 10*A024166(n-1) = A000292(n-1)*(3*n^2 - 2). Since a(n) is a sum of triangular numbers, 10=1+2+3+4 is the 4th triangular number, A024166 is a sum of cubes, and A000292 is a tetrahedral number, is there a geometric proof of Berselli's formula? (Compare Nelsen and Unal's "Proof Without Words: Runs of Triangular Numbers.") [Jonathan Sondow, Mar 04 2013]

Examples

			T(1) + T(2) + T(3) = 1 + 3 + 6 = 10 = T(4) and 4 = 2^2, so a(2) = 10.
T(5) + T(6) + T(7) + T(8) = 15 + 21 + 28 + 36 = 100 = 45 + 55 = T(9) + T(10) and 9 = 3^2, so a(3) = 100.
		

Crossrefs

Programs

  • Mathematica
    Table[ n/6 (2 - 5 n^2 + 3 n^4), {n, 1, 40}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,10,100,460,1460,3710},40] (* Harvey P. Dale, Apr 19 2016 *)

Formula

a(n) = T(n^2-n-1)+T(n^2-n)+...+T(n^2-1) = T(n^2)+T(n^2+1)+...+T(n^2+n-2), where T = A000217.
a(n) = (3*n^5 - 5*n^3 + 2*n)/6 = (n-1)*n*(n+1)*(3*n^2 - 2)/6.
G.f.: 10*x^2*(1+4*x+x^2)/(1-x)^6. [Bruno Berselli, Mar 04 2013]
a(n) = -a(-n) = 10*A024166(n-1) = A000292(n-1)*A100536(n). [Bruno Berselli, Mar 04 2013]
a(n) = TP(n^2-1)-TP(n^2-n-2) = TP(n^2+n-2)-TP(n^2-1) = TP(n-1)*(3*n^2-2), where TP = A000292. [Jonathan Sondow, Mar 04 2013]