cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222759 Conjectured number of primes p for which binomial(n*p,p) (mod p^3) does not equal n.

Original entry on oeis.org

0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

T. D. Noe, Mar 12 2013

Keywords

Comments

It appears that, for k > 2 and n >= prime(prime(k)^3), then a(n) >= k.
Sequences A000720 and A056811 give results for binomial(n*p,p) (mod p) and binomial(n*p,p) (mod p^2), respectively. It appears that mod p^3 is the last case; that is, this identity does not hold for higher powers. - T. D. Noe, Mar 14 2013

Crossrefs

Cf. A096328 (prime(prime(n)^3)).
Cf. A000720, A056811 (primePi(n) and primePi(sqrt(n))).

Programs

  • Mathematica
    Table[Length[Select[Prime[Range[100]], Mod[Binomial[n*#,#], #^3] != n &]], {n, 87}]